首套阿布扎比9.625英寸× 12.25英寸无定向套管,随钻下入中间井段,节省了2天钻机时间,提高了钻井效率,改善了井的完整性

Felix Leonardo Castillo, Roswall Enrique Bethancourt, M. Sarhan, Abd Al Sayfi, Imad Al Hamlawi, Luis Ramon Baptista, Sultan Saeed Al Mansoori, Ali Mubarak Al Braiki, Gennadys Ferrer, Alejandro Cortes, M. Husien, Nader Jouzy, Delimar Cristobal Herrera, Praveen Joseph Benny, R. Aubakirov, Joey Roberie
{"title":"首套阿布扎比9.625英寸× 12.25英寸无定向套管,随钻下入中间井段,节省了2天钻机时间,提高了钻井效率,改善了井的完整性","authors":"Felix Leonardo Castillo, Roswall Enrique Bethancourt, M. Sarhan, Abd Al Sayfi, Imad Al Hamlawi, Luis Ramon Baptista, Sultan Saeed Al Mansoori, Ali Mubarak Al Braiki, Gennadys Ferrer, Alejandro Cortes, M. Husien, Nader Jouzy, Delimar Cristobal Herrera, Praveen Joseph Benny, R. Aubakirov, Joey Roberie","doi":"10.2118/207565-ms","DOIUrl":null,"url":null,"abstract":"\n Significant mud losses during drilling often compromises well integrity whenever sustainable annular pressure (SAP), is observed due to poor cement integrity around 9-5/8-in casing in wells requiring gas lift completion. Heavy Casing Design (HCD) is applied as a solution; whereby, two casing strings are used to isolate the aquifers and loss zones, thus ensuring improved cement integrity around the 9 5/8-in intermediate casing. Casing While Drilling (CWD) is a potential solution to mitigate mud losses and wellbore instability enabling an optimized alternative to HCD by ensuring well integrity is maintained while reducing well construction cost. This paper details the first 12 ¼-in × 9-5/8-in non-directional CWD trial accomplished in Abu Dhabi onshore\n The Non-Directional CWD Technology was tested in a vertical intermediate hole section of a modified heavy casing design (MHCD) aimed at reducing well construction cost over heavy casing design (HCD) as shown in the figure 1. A drillable alloy bit with an optimized polycrystalline diamond cutters (PDC) cutting structure was used to drill with casing through a multi-formation interval with varying hardness and mechanical properties. Drilling dynamics, hydraulics and casing centralization analysis were performed to evaluate the directional tendency of the drill string along with the optimum drilling parameters to address the losses scenario, hole cleaning, vibration, and maximum surface torque.\n The CWD operation was completed in a single run with zero quality, health, safety, and environment (HSE) events and minimum exposure of personal to manual handling of heavy tubulars. Exceptional cement bonding was observed around the 9 5/8 in casing indicative of good hole quality despite running a significant number of centralizers (with smaller diameter), compared with the conventional drilled wells (cement bond logging was done after the section). CWD implementation saved two days of rig operations time relative to the average of the offset wells with the same casing design. The rate of Penetration (ROP) was slightly lower than the conventional drilling ROP in this application. The cost savings are mainly attributed to the elimination of casing-running flat time and Non-Productive Time (NPT) associated with clearing tight spots, BHA pack-off, wiper trips. The application of CWD in the MHCD wells deliver an estimated saving of USD 0.8MM in well construction cost per well compared to the HCD well design. Additional performance optimization opportunities have been identified for implementation in future applications.\n The combination of the MHCD and CWD technology enhances cementing quality across heavy loss zones translating into improved well integrity. Implementing this technology on MHCD wells could potentially save up to USD 200MM (considering 250 wells drilled).\n This is the first application of the technology in Abu Dhabi and brings key learning for future enhancement of drilling efficiency. The CWD technology has potential to enhance the wellbore construction process, which are typically impacted by either circulation losses and wellbore instability issues or a combination of both, it can applied to most of the offshore and onshore fields in Abu Dhabi.","PeriodicalId":11069,"journal":{"name":"Day 2 Tue, November 16, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First Abu Dhabi 9.625in × 12.25in Non-Directional Casing While Drilling CWD Run for Intermediate Hole Section Saves Two Days Rig Time, Enhancing Drilling Efficiency & Improving Well Integrity\",\"authors\":\"Felix Leonardo Castillo, Roswall Enrique Bethancourt, M. Sarhan, Abd Al Sayfi, Imad Al Hamlawi, Luis Ramon Baptista, Sultan Saeed Al Mansoori, Ali Mubarak Al Braiki, Gennadys Ferrer, Alejandro Cortes, M. Husien, Nader Jouzy, Delimar Cristobal Herrera, Praveen Joseph Benny, R. Aubakirov, Joey Roberie\",\"doi\":\"10.2118/207565-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Significant mud losses during drilling often compromises well integrity whenever sustainable annular pressure (SAP), is observed due to poor cement integrity around 9-5/8-in casing in wells requiring gas lift completion. Heavy Casing Design (HCD) is applied as a solution; whereby, two casing strings are used to isolate the aquifers and loss zones, thus ensuring improved cement integrity around the 9 5/8-in intermediate casing. Casing While Drilling (CWD) is a potential solution to mitigate mud losses and wellbore instability enabling an optimized alternative to HCD by ensuring well integrity is maintained while reducing well construction cost. This paper details the first 12 ¼-in × 9-5/8-in non-directional CWD trial accomplished in Abu Dhabi onshore\\n The Non-Directional CWD Technology was tested in a vertical intermediate hole section of a modified heavy casing design (MHCD) aimed at reducing well construction cost over heavy casing design (HCD) as shown in the figure 1. A drillable alloy bit with an optimized polycrystalline diamond cutters (PDC) cutting structure was used to drill with casing through a multi-formation interval with varying hardness and mechanical properties. Drilling dynamics, hydraulics and casing centralization analysis were performed to evaluate the directional tendency of the drill string along with the optimum drilling parameters to address the losses scenario, hole cleaning, vibration, and maximum surface torque.\\n The CWD operation was completed in a single run with zero quality, health, safety, and environment (HSE) events and minimum exposure of personal to manual handling of heavy tubulars. Exceptional cement bonding was observed around the 9 5/8 in casing indicative of good hole quality despite running a significant number of centralizers (with smaller diameter), compared with the conventional drilled wells (cement bond logging was done after the section). CWD implementation saved two days of rig operations time relative to the average of the offset wells with the same casing design. The rate of Penetration (ROP) was slightly lower than the conventional drilling ROP in this application. The cost savings are mainly attributed to the elimination of casing-running flat time and Non-Productive Time (NPT) associated with clearing tight spots, BHA pack-off, wiper trips. The application of CWD in the MHCD wells deliver an estimated saving of USD 0.8MM in well construction cost per well compared to the HCD well design. Additional performance optimization opportunities have been identified for implementation in future applications.\\n The combination of the MHCD and CWD technology enhances cementing quality across heavy loss zones translating into improved well integrity. Implementing this technology on MHCD wells could potentially save up to USD 200MM (considering 250 wells drilled).\\n This is the first application of the technology in Abu Dhabi and brings key learning for future enhancement of drilling efficiency. The CWD technology has potential to enhance the wellbore construction process, which are typically impacted by either circulation losses and wellbore instability issues or a combination of both, it can applied to most of the offshore and onshore fields in Abu Dhabi.\",\"PeriodicalId\":11069,\"journal\":{\"name\":\"Day 2 Tue, November 16, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, November 16, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207565-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, November 16, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207565-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在需要气举完井的井中,由于9-5/8-in套管附近的水泥完整性较差,每当观察到可持续环空压力(SAP)时,钻井过程中严重的泥浆漏失通常会影响井的完整性。采用重型套管设计(HCD)作为解决方案;因此,使用两套管柱来隔离含水层和漏失层,从而确保了9 - 5/ 8in中间套管周围的水泥完整性。随钻套管(CWD)是一种潜在的解决方案,可以减少泥浆漏失和井筒不稳定性,在保证井完整性的同时降低建井成本,是HCD的最佳替代方案。本文详细介绍了在阿布扎比陆上完成的第一次12¼-in × 9-5/8-in非定向CWD试验,非定向CWD技术在改进的重型套管设计(MHCD)的垂直中间井段进行了测试,旨在降低重型套管设计(HCD)的建井成本,如图1所示。采用优化的聚晶金刚石切削齿(PDC)切削结构的可钻性合金钻头与套管一起钻进不同硬度和力学性能的多层地层。通过钻井动力学、水力学和套管扶正分析,评估钻柱的定向趋势以及最佳钻井参数,以解决漏失情况、井眼清洁、振动和最大地面扭矩等问题。CWD作业在一次下钻中完成,没有发生任何质量、健康、安全和环境(HSE)事件,也没有人为操作重型管柱的风险。与常规井(井段结束后进行水泥胶结测井)相比,尽管下了大量扶正器(直径较小),但在套管的9.5 /8处仍观察到异常的水泥胶结,表明井眼质量良好。与使用相同套管设计的邻井相比,CWD的实施平均节省了2天的钻机作业时间。在该应用中,机械钻速(ROP)略低于常规钻井的ROP。节省的成本主要归功于消除了套管下入时间和与清理紧点、BHA封隔、刮水器起下钻相关的非生产时间(NPT)。与HCD井设计相比,CWD在MHCD井中的应用预计每口井可节省80万美元的建井成本。已经确定了其他性能优化机会,以便在未来的应用程序中实现。MHCD和CWD技术的结合提高了重漏失层的固井质量,从而提高了井的完整性。在MHCD井中实施该技术可节省高达2亿美元的成本(考虑已钻250口井)。这是该技术在阿布扎比的首次应用,为未来提高钻井效率提供了重要的经验。CWD技术具有改善井筒施工过程的潜力,通常会受到循环漏失和井筒不稳定问题的影响,或者两者兼而有之,它可以应用于阿布扎比的大多数海上和陆上油田。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
First Abu Dhabi 9.625in × 12.25in Non-Directional Casing While Drilling CWD Run for Intermediate Hole Section Saves Two Days Rig Time, Enhancing Drilling Efficiency & Improving Well Integrity
Significant mud losses during drilling often compromises well integrity whenever sustainable annular pressure (SAP), is observed due to poor cement integrity around 9-5/8-in casing in wells requiring gas lift completion. Heavy Casing Design (HCD) is applied as a solution; whereby, two casing strings are used to isolate the aquifers and loss zones, thus ensuring improved cement integrity around the 9 5/8-in intermediate casing. Casing While Drilling (CWD) is a potential solution to mitigate mud losses and wellbore instability enabling an optimized alternative to HCD by ensuring well integrity is maintained while reducing well construction cost. This paper details the first 12 ¼-in × 9-5/8-in non-directional CWD trial accomplished in Abu Dhabi onshore The Non-Directional CWD Technology was tested in a vertical intermediate hole section of a modified heavy casing design (MHCD) aimed at reducing well construction cost over heavy casing design (HCD) as shown in the figure 1. A drillable alloy bit with an optimized polycrystalline diamond cutters (PDC) cutting structure was used to drill with casing through a multi-formation interval with varying hardness and mechanical properties. Drilling dynamics, hydraulics and casing centralization analysis were performed to evaluate the directional tendency of the drill string along with the optimum drilling parameters to address the losses scenario, hole cleaning, vibration, and maximum surface torque. The CWD operation was completed in a single run with zero quality, health, safety, and environment (HSE) events and minimum exposure of personal to manual handling of heavy tubulars. Exceptional cement bonding was observed around the 9 5/8 in casing indicative of good hole quality despite running a significant number of centralizers (with smaller diameter), compared with the conventional drilled wells (cement bond logging was done after the section). CWD implementation saved two days of rig operations time relative to the average of the offset wells with the same casing design. The rate of Penetration (ROP) was slightly lower than the conventional drilling ROP in this application. The cost savings are mainly attributed to the elimination of casing-running flat time and Non-Productive Time (NPT) associated with clearing tight spots, BHA pack-off, wiper trips. The application of CWD in the MHCD wells deliver an estimated saving of USD 0.8MM in well construction cost per well compared to the HCD well design. Additional performance optimization opportunities have been identified for implementation in future applications. The combination of the MHCD and CWD technology enhances cementing quality across heavy loss zones translating into improved well integrity. Implementing this technology on MHCD wells could potentially save up to USD 200MM (considering 250 wells drilled). This is the first application of the technology in Abu Dhabi and brings key learning for future enhancement of drilling efficiency. The CWD technology has potential to enhance the wellbore construction process, which are typically impacted by either circulation losses and wellbore instability issues or a combination of both, it can applied to most of the offshore and onshore fields in Abu Dhabi.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Three-Dimensional Visualization of Oil Displacement by Foam in Porous Media Maximizing Condensate Recovery With Proven Cost Simulation for a Giant UAE Field: Base Study to Estimate Productivity between Horizontal and Vertical Wells Rationalization of Flares at Terminal Island A Geoengineering Approach to Maximum Reservoir Contact Wells Design: Case Study in a Carbonate Reservoir Under Water and Miscible Gas Injection Maximizing Brine Recovery After the Displacement of Reservoir Drill-in Fluids to Reduce Well Cost Via New, Alternate Technology In a Reservoir Offshore Abu Dhabi
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1