几何尺寸对扶手椅结构单层石墨烯固有频率的影响

Harshad Patel
{"title":"几何尺寸对扶手椅结构单层石墨烯固有频率的影响","authors":"Harshad Patel","doi":"10.30564/jmer.v4i2.3831","DOIUrl":null,"url":null,"abstract":"Graphene has remarkable strength, such as yield strength and elasticconstant. The dynamic behaviour of graphene sheet is affected bygeometrical variation in atomic arrangement. This paper introducedgraphene with armchair atomic structure for estimating fundamental naturalfrequencies. The presented analysis can be useful for the possible highfrequency nanomechanical resonator systems. The analytical formulation,based on classical plate theory and continuum solid modelling based finiteelement method have been performed for estimation of fundamental naturalfrequencies of single layer graphene sheet (SGLS) with different boundaryconditions. The free edge and clamped edge boundary conditions have beenconsidered. For simplifying analytical formulations, Blevins approach fordynamic solution has been adopted and for validating analytical results.The finite element analysis of SLGS has been performed using ANSYSsoftware. The effect of variation in geometrical parameters in terms ofwidth and length of SLGS has been analysed for realization of ultra-highfrequency based nanomechanical resonator systems","PeriodicalId":16153,"journal":{"name":"Journal of Mechanical Engineering Research and Developments","volume":"12 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometrical Dimensional Effect on Natural Frequency of Single Layer Graphene in Armchair Configuration\",\"authors\":\"Harshad Patel\",\"doi\":\"10.30564/jmer.v4i2.3831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene has remarkable strength, such as yield strength and elasticconstant. The dynamic behaviour of graphene sheet is affected bygeometrical variation in atomic arrangement. This paper introducedgraphene with armchair atomic structure for estimating fundamental naturalfrequencies. The presented analysis can be useful for the possible highfrequency nanomechanical resonator systems. The analytical formulation,based on classical plate theory and continuum solid modelling based finiteelement method have been performed for estimation of fundamental naturalfrequencies of single layer graphene sheet (SGLS) with different boundaryconditions. The free edge and clamped edge boundary conditions have beenconsidered. For simplifying analytical formulations, Blevins approach fordynamic solution has been adopted and for validating analytical results.The finite element analysis of SLGS has been performed using ANSYSsoftware. The effect of variation in geometrical parameters in terms ofwidth and length of SLGS has been analysed for realization of ultra-highfrequency based nanomechanical resonator systems\",\"PeriodicalId\":16153,\"journal\":{\"name\":\"Journal of Mechanical Engineering Research and Developments\",\"volume\":\"12 1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering Research and Developments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30564/jmer.v4i2.3831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering Research and Developments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30564/jmer.v4i2.3831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

石墨烯具有显著的屈服强度和弹性常数。石墨烯薄膜的动力学行为受原子排列的几何变化的影响。本文介绍了具有扶手椅原子结构的石墨烯用于估计基本固有频率。本文的分析对可能的高频纳米机械谐振系统具有一定的指导意义。基于经典平板理论和基于连续体模型的有限元方法,推导了不同边界条件下单层石墨烯片的基本固有频率的解析公式。考虑了自由边和固支边边界条件。为了简化分析公式,采用了布莱文斯的动态求解方法,并对分析结果进行了验证。利用ansys软件对SLGS进行了有限元分析。分析了SLGS宽度和长度等几何参数变化对实现超高频纳米机械谐振系统的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Geometrical Dimensional Effect on Natural Frequency of Single Layer Graphene in Armchair Configuration
Graphene has remarkable strength, such as yield strength and elasticconstant. The dynamic behaviour of graphene sheet is affected bygeometrical variation in atomic arrangement. This paper introducedgraphene with armchair atomic structure for estimating fundamental naturalfrequencies. The presented analysis can be useful for the possible highfrequency nanomechanical resonator systems. The analytical formulation,based on classical plate theory and continuum solid modelling based finiteelement method have been performed for estimation of fundamental naturalfrequencies of single layer graphene sheet (SGLS) with different boundaryconditions. The free edge and clamped edge boundary conditions have beenconsidered. For simplifying analytical formulations, Blevins approach fordynamic solution has been adopted and for validating analytical results.The finite element analysis of SLGS has been performed using ANSYSsoftware. The effect of variation in geometrical parameters in terms ofwidth and length of SLGS has been analysed for realization of ultra-highfrequency based nanomechanical resonator systems
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 weeks
期刊介绍: The scopes of the journal include, but are not limited to, the following topics: • Thermal Engineering and Fluids Engineering • Mechanics • Kinematics, Dynamics, & Control of Mechanical Systems • Mechatronics, Robotics and Automation • Design, Manufacturing, & Product Development • Human and Machine Haptics Specific topics of interest include: Advanced Manufacturing Technology, Analysis and Decision of Industry & Manufacturing System, Applied Mechanics, Biomechanics, CAD/CAM Integration Technology, Complex Curve Design, Manufacturing & Application, Computational Mechanics, Computer-aided Geometric Design & Simulation, Fluid Dynamics, Fluid Mechanics, General mechanics, Geomechanics, Industrial Application of CAD, Machinery and Machine Design, Machine Vision and Learning, Material Science and Processing, Mechanical Power Engineering, Mechatronics and Robotics, Artificial Intelligence, PC Guided Design and Manufacture, Precision Manufacturing & Measurement, Precision Mechanics, Production Technology, Quality & Reliability Engineering, Renewable Energy Technologies, Science and Engineering Computing, Solid Mechanics, Structural Dynamics, System Dynamics and Simulation, Systems Science and Systems Engineering, Vehicle Dynamic Performance Simulation, Virtual-tech Based System & Process-simulation, etc.
期刊最新文献
Disassembling Process Inference Using Positional Relations Matrix for Complicated Machines Modeling of a Zero CO2 and Zero Heat Pollution Compressed Air Engine for the Urban Transport Sector Tools and Computational Machinery for Movement Geometrical Dimensional Effect on Natural Frequency of Single Layer Graphene in Armchair Configuration Use of the Method of Guidance by a Required Velocity in Control of Spacecraft Attitude
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1