Yoo-Jin Jung, J. Cha, S. Lim, Jin-Woo Park, Min-Chul Shin, Young‐Kwon Park
{"title":"分散剂特性对SCR催化剂脱硝效率的影响","authors":"Yoo-Jin Jung, J. Cha, S. Lim, Jin-Woo Park, Min-Chul Shin, Young‐Kwon Park","doi":"10.1177/0958305X221101152","DOIUrl":null,"url":null,"abstract":"In this study, we analyzed the effect of dispersant characteristics on the selective catalytic reduction (SCR) catalyst properties and de-NOx efficiency. For this, we measured the zeta potential and pH value of each dispersant, and compared the thermal properties of the dispersant through TG-DTA analysis. Also, the Py-GC/MS analysis results and the MSDS contents of the product were used to compare the components and molecular weight types of the dispersant. As a result, the higher the zeta potential, pH, and molecular weight of the dispersant, the more improved the dispersibility of the TiO2 slurry. Characteristics such as the rheology, sedimentation, and pH change, were studied to compare the dispersibility of the catalyst slurries, and the dispersion characteristics of the TiO2 slurries were confirmed by TEM. The SCR catalysts prepared varied based on the dispersant added, with the varying factor being the de-NOx efficiency between (250 to 450) °C depending on the dispersibility. The dispersant with the excellent dispersibility gave the highest efficiency of 84% or more at 250°C and 300°C, and the highest de-NOx efficiency of more than 92% at 350°C and 400°C.","PeriodicalId":11652,"journal":{"name":"Energy & Environment","volume":"16 4 1","pages":"2031 - 2043"},"PeriodicalIF":4.0000,"publicationDate":"2022-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of dispersant characteristics on the De-NOx efficiency of SCR catalyst\",\"authors\":\"Yoo-Jin Jung, J. Cha, S. Lim, Jin-Woo Park, Min-Chul Shin, Young‐Kwon Park\",\"doi\":\"10.1177/0958305X221101152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we analyzed the effect of dispersant characteristics on the selective catalytic reduction (SCR) catalyst properties and de-NOx efficiency. For this, we measured the zeta potential and pH value of each dispersant, and compared the thermal properties of the dispersant through TG-DTA analysis. Also, the Py-GC/MS analysis results and the MSDS contents of the product were used to compare the components and molecular weight types of the dispersant. As a result, the higher the zeta potential, pH, and molecular weight of the dispersant, the more improved the dispersibility of the TiO2 slurry. Characteristics such as the rheology, sedimentation, and pH change, were studied to compare the dispersibility of the catalyst slurries, and the dispersion characteristics of the TiO2 slurries were confirmed by TEM. The SCR catalysts prepared varied based on the dispersant added, with the varying factor being the de-NOx efficiency between (250 to 450) °C depending on the dispersibility. The dispersant with the excellent dispersibility gave the highest efficiency of 84% or more at 250°C and 300°C, and the highest de-NOx efficiency of more than 92% at 350°C and 400°C.\",\"PeriodicalId\":11652,\"journal\":{\"name\":\"Energy & Environment\",\"volume\":\"16 4 1\",\"pages\":\"2031 - 2043\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2022-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1177/0958305X221101152\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0958305X221101152","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
The effect of dispersant characteristics on the De-NOx efficiency of SCR catalyst
In this study, we analyzed the effect of dispersant characteristics on the selective catalytic reduction (SCR) catalyst properties and de-NOx efficiency. For this, we measured the zeta potential and pH value of each dispersant, and compared the thermal properties of the dispersant through TG-DTA analysis. Also, the Py-GC/MS analysis results and the MSDS contents of the product were used to compare the components and molecular weight types of the dispersant. As a result, the higher the zeta potential, pH, and molecular weight of the dispersant, the more improved the dispersibility of the TiO2 slurry. Characteristics such as the rheology, sedimentation, and pH change, were studied to compare the dispersibility of the catalyst slurries, and the dispersion characteristics of the TiO2 slurries were confirmed by TEM. The SCR catalysts prepared varied based on the dispersant added, with the varying factor being the de-NOx efficiency between (250 to 450) °C depending on the dispersibility. The dispersant with the excellent dispersibility gave the highest efficiency of 84% or more at 250°C and 300°C, and the highest de-NOx efficiency of more than 92% at 350°C and 400°C.
期刊介绍:
Energy & Environment is an interdisciplinary journal inviting energy policy analysts, natural scientists and engineers, as well as lawyers and economists to contribute to mutual understanding and learning, believing that better communication between experts will enhance the quality of policy, advance social well-being and help to reduce conflict. The journal encourages dialogue between the social sciences as energy demand and supply are observed and analysed with reference to politics of policy-making and implementation. The rapidly evolving social and environmental impacts of energy supply, transport, production and use at all levels require contribution from many disciplines if policy is to be effective. In particular E & E invite contributions from the study of policy delivery, ultimately more important than policy formation. The geopolitics of energy are also important, as are the impacts of environmental regulations and advancing technologies on national and local politics, and even global energy politics. Energy & Environment is a forum for constructive, professional information sharing, as well as debate across disciplines and professions, including the financial sector. Mathematical articles are outside the scope of Energy & Environment. The broader policy implications of submitted research should be addressed and environmental implications, not just emission quantities, be discussed with reference to scientific assumptions. This applies especially to technical papers based on arguments suggested by other disciplines, funding bodies or directly by policy-makers.