基于CPU的YOLO:一种实时目标检测算法

Md. Bahar Ullah
{"title":"基于CPU的YOLO:一种实时目标检测算法","authors":"Md. Bahar Ullah","doi":"10.1109/TENSYMP50017.2020.9230778","DOIUrl":null,"url":null,"abstract":"This paper describes CPU Based YOLO, a real time object detection model to run on Non-GPU computers that may facilitate the users of low configuration computer. There are a lot of well improved algorithms for object detection such as YOLO, Faster R-CNN, Fast R-CNN, R-CNN, Mask R-CNN, R-FCN, SSD, RetinaNet etc. YOLO is a Deep Neural Network algorithm for object detection which is most fast and accurate than most other algorithms. YOLO is designed for GPU based computers which should have above 12GB Graphics Card. In our model, we optimize YOLO with OpenCV such a way that real time object detection can be possible on CPU based Computers. Our model detects object from video in 10.12 – 16.29 FPS and with 80-99% confidence on several Non –GPU computers. CPU Based YOLO achieves 31.05% mAP.","PeriodicalId":6721,"journal":{"name":"2020 IEEE Region 10 Symposium (TENSYMP)","volume":"1 1","pages":"552-555"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"CPU Based YOLO: A Real Time Object Detection Algorithm\",\"authors\":\"Md. Bahar Ullah\",\"doi\":\"10.1109/TENSYMP50017.2020.9230778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes CPU Based YOLO, a real time object detection model to run on Non-GPU computers that may facilitate the users of low configuration computer. There are a lot of well improved algorithms for object detection such as YOLO, Faster R-CNN, Fast R-CNN, R-CNN, Mask R-CNN, R-FCN, SSD, RetinaNet etc. YOLO is a Deep Neural Network algorithm for object detection which is most fast and accurate than most other algorithms. YOLO is designed for GPU based computers which should have above 12GB Graphics Card. In our model, we optimize YOLO with OpenCV such a way that real time object detection can be possible on CPU based Computers. Our model detects object from video in 10.12 – 16.29 FPS and with 80-99% confidence on several Non –GPU computers. CPU Based YOLO achieves 31.05% mAP.\",\"PeriodicalId\":6721,\"journal\":{\"name\":\"2020 IEEE Region 10 Symposium (TENSYMP)\",\"volume\":\"1 1\",\"pages\":\"552-555\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Region 10 Symposium (TENSYMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENSYMP50017.2020.9230778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Region 10 Symposium (TENSYMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENSYMP50017.2020.9230778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

基于CPU的YOLO是一种运行在非gpu计算机上的实时目标检测模型,可以方便低配置计算机的用户使用。有很多改进的目标检测算法,如YOLO, Faster R-CNN, Fast R-CNN, R-CNN, Mask R-CNN, R-FCN, SSD, RetinaNet等。YOLO是一种用于目标检测的深度神经网络算法,它比大多数其他算法更快、更准确。YOLO是为基于GPU的计算机设计的,应该有12GB以上的显卡。在我们的模型中,我们用OpenCV优化YOLO,使实时对象检测可以在基于CPU的计算机上实现。我们的模型在几台非gpu计算机上以10.12 - 16.29 FPS检测视频中的物体,置信度为80-99%。基于CPU的YOLO实现31.05% mAP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CPU Based YOLO: A Real Time Object Detection Algorithm
This paper describes CPU Based YOLO, a real time object detection model to run on Non-GPU computers that may facilitate the users of low configuration computer. There are a lot of well improved algorithms for object detection such as YOLO, Faster R-CNN, Fast R-CNN, R-CNN, Mask R-CNN, R-FCN, SSD, RetinaNet etc. YOLO is a Deep Neural Network algorithm for object detection which is most fast and accurate than most other algorithms. YOLO is designed for GPU based computers which should have above 12GB Graphics Card. In our model, we optimize YOLO with OpenCV such a way that real time object detection can be possible on CPU based Computers. Our model detects object from video in 10.12 – 16.29 FPS and with 80-99% confidence on several Non –GPU computers. CPU Based YOLO achieves 31.05% mAP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Honorary Chair Multi-connectivity for URLLC: Performance Comparison of Different Architectures Efficiency Evaluation of P&O MPPT Technique used for Maximum Power Extraction from Solar Photovoltaic System Application of Internet of Things (IoT) to Develop a Smart Watering System for Cairns Parklands – A Case Study Analysis of Stability and Control of Helicopter Flight Dynamics Through Mathematical Modeling in Matlab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1