G. Grandjean, X. Briottet, K. Adeline, A. Bourguignon, A. Hohmann
{"title":"粘土矿物成像光谱制图","authors":"G. Grandjean, X. Briottet, K. Adeline, A. Bourguignon, A. Hohmann","doi":"10.5772/INTECHOPEN.86149","DOIUrl":null,"url":null,"abstract":"Mapping subsurface clay minerals is an important issue because they have particular behaviors in terms of mechanics and hydrology that directly affects assets laid at the surface such as buildings, houses, etc. They have a direct impact in ground stability due to their swelling capacities, constraining infiltration processes during flooding, especially when moisture is important. So detecting and characterizing clay mineral in soils serve urban planning issues and improve the risk reduction by predicting impacts of subsidence on houses and infrastruc-tures. High-resolution clay maps are thus needed with accurate indications on mineral species and abundances. Clay minerals, known as phyllosilicates, are divided in three main species: smectite, illite, and kaolinite. The smectite group highly contributes to the swelling behavior of soils, and because geotechnical soil analyses are expensive and time-consuming, it is urgent to develop new approaches for mapping clays' spatial distribution by using new technologies, e.g., ground spectrometer or remote hyperspectral cameras [0.4-2.5 μm]. These technics constitute efficient alternatives to conventional methods. We present in this chapter some recent results we got for characterizing clay species and their abundances from spectrometry, used either from a ground spectrometer or from hyperspectral cameras.","PeriodicalId":11389,"journal":{"name":"Earth Observation and Geospatial Analyses [Working Title]","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Clay Minerals Mapping from Imaging Spectroscopy\",\"authors\":\"G. Grandjean, X. Briottet, K. Adeline, A. Bourguignon, A. Hohmann\",\"doi\":\"10.5772/INTECHOPEN.86149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mapping subsurface clay minerals is an important issue because they have particular behaviors in terms of mechanics and hydrology that directly affects assets laid at the surface such as buildings, houses, etc. They have a direct impact in ground stability due to their swelling capacities, constraining infiltration processes during flooding, especially when moisture is important. So detecting and characterizing clay mineral in soils serve urban planning issues and improve the risk reduction by predicting impacts of subsidence on houses and infrastruc-tures. High-resolution clay maps are thus needed with accurate indications on mineral species and abundances. Clay minerals, known as phyllosilicates, are divided in three main species: smectite, illite, and kaolinite. The smectite group highly contributes to the swelling behavior of soils, and because geotechnical soil analyses are expensive and time-consuming, it is urgent to develop new approaches for mapping clays' spatial distribution by using new technologies, e.g., ground spectrometer or remote hyperspectral cameras [0.4-2.5 μm]. These technics constitute efficient alternatives to conventional methods. We present in this chapter some recent results we got for characterizing clay species and their abundances from spectrometry, used either from a ground spectrometer or from hyperspectral cameras.\",\"PeriodicalId\":11389,\"journal\":{\"name\":\"Earth Observation and Geospatial Analyses [Working Title]\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Observation and Geospatial Analyses [Working Title]\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/INTECHOPEN.86149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Observation and Geospatial Analyses [Working Title]","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.86149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mapping subsurface clay minerals is an important issue because they have particular behaviors in terms of mechanics and hydrology that directly affects assets laid at the surface such as buildings, houses, etc. They have a direct impact in ground stability due to their swelling capacities, constraining infiltration processes during flooding, especially when moisture is important. So detecting and characterizing clay mineral in soils serve urban planning issues and improve the risk reduction by predicting impacts of subsidence on houses and infrastruc-tures. High-resolution clay maps are thus needed with accurate indications on mineral species and abundances. Clay minerals, known as phyllosilicates, are divided in three main species: smectite, illite, and kaolinite. The smectite group highly contributes to the swelling behavior of soils, and because geotechnical soil analyses are expensive and time-consuming, it is urgent to develop new approaches for mapping clays' spatial distribution by using new technologies, e.g., ground spectrometer or remote hyperspectral cameras [0.4-2.5 μm]. These technics constitute efficient alternatives to conventional methods. We present in this chapter some recent results we got for characterizing clay species and their abundances from spectrometry, used either from a ground spectrometer or from hyperspectral cameras.