非晶硅的氮化:反应分子动力学模拟

M. A. Pamungkas, Choirun Nisa, Istiroyah Istiroyah, A. Abdurrouf
{"title":"非晶硅的氮化:反应分子动力学模拟","authors":"M. A. Pamungkas, Choirun Nisa, Istiroyah Istiroyah, A. Abdurrouf","doi":"10.21776/UB.JPACR.2019.008.03.487","DOIUrl":null,"url":null,"abstract":"Since silicon nitride (SiN x ) film is more stable than SiO 2, silicon nitride, thus it is widely used in semiconductor industry as an insulatorlayer. The study of nitrogenation process of a-Si was performed using molecular dynamics simulations to determine the properties of the bonds created in the structure of a-SiNx. Reactive force field (Reaxff) was used as potential in this molecular dynamic simulation owing to its ability to describe charge transfer as well as breaking and formation of atomic bonds. The structure of a-Si is obtained by melting the crystalline silicon at temperature of 3500 K followed by quenching to room temperature. The nitrogenation process was carried out by randomly distributing 900 N atoms over the a-Si surface for 60 ps at temperature varied from 300 K, 600 K, 900 K, and 1200 K. The higher the temperature nitrogenation applied in the system, the more number of N atoms adsorbed, resulting in a deeper penetration depth of Nitrogen atom. Amorphization and nitrogenation changed the distribution of coordination number of Ni, Si, and O atoms. Transfer of electrons from silicon to nitrogen occurs only in the nearest nitrogen atom with silicon atom.","PeriodicalId":22728,"journal":{"name":"The Journal of Pure and Applied Chemistry Research","volume":"1 1","pages":"197-207"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogenation of Amorphous Silicon : Reactive Molecular Dynamics Simulations\",\"authors\":\"M. A. Pamungkas, Choirun Nisa, Istiroyah Istiroyah, A. Abdurrouf\",\"doi\":\"10.21776/UB.JPACR.2019.008.03.487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since silicon nitride (SiN x ) film is more stable than SiO 2, silicon nitride, thus it is widely used in semiconductor industry as an insulatorlayer. The study of nitrogenation process of a-Si was performed using molecular dynamics simulations to determine the properties of the bonds created in the structure of a-SiNx. Reactive force field (Reaxff) was used as potential in this molecular dynamic simulation owing to its ability to describe charge transfer as well as breaking and formation of atomic bonds. The structure of a-Si is obtained by melting the crystalline silicon at temperature of 3500 K followed by quenching to room temperature. The nitrogenation process was carried out by randomly distributing 900 N atoms over the a-Si surface for 60 ps at temperature varied from 300 K, 600 K, 900 K, and 1200 K. The higher the temperature nitrogenation applied in the system, the more number of N atoms adsorbed, resulting in a deeper penetration depth of Nitrogen atom. Amorphization and nitrogenation changed the distribution of coordination number of Ni, Si, and O atoms. Transfer of electrons from silicon to nitrogen occurs only in the nearest nitrogen atom with silicon atom.\",\"PeriodicalId\":22728,\"journal\":{\"name\":\"The Journal of Pure and Applied Chemistry Research\",\"volume\":\"1 1\",\"pages\":\"197-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Pure and Applied Chemistry Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21776/UB.JPACR.2019.008.03.487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Pure and Applied Chemistry Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21776/UB.JPACR.2019.008.03.487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于氮化硅(sinx)薄膜比二氧化硅、氮化硅更稳定,因此在半导体工业中被广泛用作绝缘层。采用分子动力学模拟方法研究了a-Si的氮化过程,以确定在a-SiNx结构中产生的键的性质。由于反应力场(Reaxff)能够描述电荷转移以及原子键的断裂和形成,因此在分子动力学模拟中使用反应力场(Reaxff)作为势。将晶体硅在3500 K的温度下熔化,然后淬火至室温,得到了a-Si的结构。在300 K、600 K、900 K和1200 K的温度下,将900个N原子随机分布在a-Si表面60 ps,进行了氮化过程。系统中氮化温度越高,吸附的N原子数量越多,导致氮原子的渗透深度越深。非晶化和氮化作用改变了Ni、Si和O原子的配位数分布。从硅到氮的电子转移只发生在离硅原子最近的氮原子上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nitrogenation of Amorphous Silicon : Reactive Molecular Dynamics Simulations
Since silicon nitride (SiN x ) film is more stable than SiO 2, silicon nitride, thus it is widely used in semiconductor industry as an insulatorlayer. The study of nitrogenation process of a-Si was performed using molecular dynamics simulations to determine the properties of the bonds created in the structure of a-SiNx. Reactive force field (Reaxff) was used as potential in this molecular dynamic simulation owing to its ability to describe charge transfer as well as breaking and formation of atomic bonds. The structure of a-Si is obtained by melting the crystalline silicon at temperature of 3500 K followed by quenching to room temperature. The nitrogenation process was carried out by randomly distributing 900 N atoms over the a-Si surface for 60 ps at temperature varied from 300 K, 600 K, 900 K, and 1200 K. The higher the temperature nitrogenation applied in the system, the more number of N atoms adsorbed, resulting in a deeper penetration depth of Nitrogen atom. Amorphization and nitrogenation changed the distribution of coordination number of Ni, Si, and O atoms. Transfer of electrons from silicon to nitrogen occurs only in the nearest nitrogen atom with silicon atom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of volatile compounds in several meat and bone broth using Solid Phase Micro Extraction-Gas Chromatography Mass Spectrometry (SPME-GCMS) for initial detection of Halal and Non-Halal Food Antidiabetic Activity of the Methanol Fraction of Sungkai Leaves (Peronema canescens Jack) Effects of Preparation Temperature and Liquid-Solid Lipid Composition to Curcumin-Nanostructured Lipid Carrier Characteristics Fabricated by Microfluidic Technique Effect of Avocado Seed Ethanol Extract (Persea americana Mill) on Superoxide Dismutase (SOD1) and Histological Expression of Pancreas in Rats (Rattus norvegicus) with Diabetes Mellitus Potential Cassava Peel Waste (Manihot esculenta Crantz) in The Production of Bioethanol by Enzymatic Hydrolysis and Fermentation Using Zymomonas mobilis Bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1