Y. Suyolcu, Jiaxin Sun, B. Goodge, Jisung Park, J. Schubert, L. Kourkoutis, D. Schlom
{"title":"具有亚纳米rms粗糙度的a轴YBa2Cu3O7−x/PrBa2Cu3O7−x/YBa2Cu3O7−x三层膜","authors":"Y. Suyolcu, Jiaxin Sun, B. Goodge, Jisung Park, J. Schubert, L. Kourkoutis, D. Schlom","doi":"10.1063/5.0034648","DOIUrl":null,"url":null,"abstract":"We demonstrate a-axis YBa2Cu3O7-x/PrBa2Cu3O7-x/YBa2Cu3O7-x trilayers grown on (100) LaAlO3 substrates with improved interface smoothness. The trilayers are synthesized by ozone-assisted molecular-beam epitaxy. The thickness of the PrBa2Cu3O7-x layer is held constant at 8 nm and the thickness of the YBa2Cu3O7-x layers is varied from 24 nm to 100 nm. X-ray diffraction measurements show all trilayers to have >95% a-axis content. The rms roughness of the thinnest trilayer is < 0.7 nm and this roughness increases with the thickness of the YBa2Cu3O7-x layers. The thickness of the YBa2Cu3O7-x layers also affects the transport properties: while all samples exhibit an onset of the superconducting transition at and above 85 K, the thinner samples show wider transition widths, {\\Delta}Tc. High-resolution scanning transmission electron microscopy reveals coherent and chemically sharp interfaces, and that growth begins with a cubic (Y,Ba)CuO3-x perovskite phase that transforms into a-axis oriented YBa2Cu3O7-x as the substrate temperature is ramped up.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"a-axis YBa2Cu3O7−x/PrBa2Cu3O7−x/YBa2Cu3O7−x trilayers with subnanometer rms roughness\",\"authors\":\"Y. Suyolcu, Jiaxin Sun, B. Goodge, Jisung Park, J. Schubert, L. Kourkoutis, D. Schlom\",\"doi\":\"10.1063/5.0034648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We demonstrate a-axis YBa2Cu3O7-x/PrBa2Cu3O7-x/YBa2Cu3O7-x trilayers grown on (100) LaAlO3 substrates with improved interface smoothness. The trilayers are synthesized by ozone-assisted molecular-beam epitaxy. The thickness of the PrBa2Cu3O7-x layer is held constant at 8 nm and the thickness of the YBa2Cu3O7-x layers is varied from 24 nm to 100 nm. X-ray diffraction measurements show all trilayers to have >95% a-axis content. The rms roughness of the thinnest trilayer is < 0.7 nm and this roughness increases with the thickness of the YBa2Cu3O7-x layers. The thickness of the YBa2Cu3O7-x layers also affects the transport properties: while all samples exhibit an onset of the superconducting transition at and above 85 K, the thinner samples show wider transition widths, {\\\\Delta}Tc. High-resolution scanning transmission electron microscopy reveals coherent and chemically sharp interfaces, and that growth begins with a cubic (Y,Ba)CuO3-x perovskite phase that transforms into a-axis oriented YBa2Cu3O7-x as the substrate temperature is ramped up.\",\"PeriodicalId\":8514,\"journal\":{\"name\":\"arXiv: Superconductivity\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Superconductivity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0034648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0034648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
a-axis YBa2Cu3O7−x/PrBa2Cu3O7−x/YBa2Cu3O7−x trilayers with subnanometer rms roughness
We demonstrate a-axis YBa2Cu3O7-x/PrBa2Cu3O7-x/YBa2Cu3O7-x trilayers grown on (100) LaAlO3 substrates with improved interface smoothness. The trilayers are synthesized by ozone-assisted molecular-beam epitaxy. The thickness of the PrBa2Cu3O7-x layer is held constant at 8 nm and the thickness of the YBa2Cu3O7-x layers is varied from 24 nm to 100 nm. X-ray diffraction measurements show all trilayers to have >95% a-axis content. The rms roughness of the thinnest trilayer is < 0.7 nm and this roughness increases with the thickness of the YBa2Cu3O7-x layers. The thickness of the YBa2Cu3O7-x layers also affects the transport properties: while all samples exhibit an onset of the superconducting transition at and above 85 K, the thinner samples show wider transition widths, {\Delta}Tc. High-resolution scanning transmission electron microscopy reveals coherent and chemically sharp interfaces, and that growth begins with a cubic (Y,Ba)CuO3-x perovskite phase that transforms into a-axis oriented YBa2Cu3O7-x as the substrate temperature is ramped up.