{"title":"评估输入数据不一致对模拟自然景观类型的选定定量方法的影响","authors":"Rok Ciglic","doi":"10.3986/gv90107","DOIUrl":null,"url":null,"abstract":"With supervised classification methods, we can determine classification rules for landscape types of existing landscape typologies. In this article, we analyse whether supervised classification methods could also define adequate rules for landscape types determination in the case of poorly designed typologies. We tried to model two Slovenian intentionally distorted natural landscape typologies. We noted that due to the incongruity of the distorted typologies, decision tree methods were not capable of forming rules for determination of landscape types. Although we did manage to create modelled distorted typologies with minimum distance to means method, maximum likelihood method, and k -nearest neighbours method, they matched the basic distorted typology only slightly. Z metodami nadzorovane klasifikacije lahko za obstojece naravnopokrajinske tipizacije dolocimo klasifikacijska pravila za posamezne pokrajinske tipe. V prispevku razpravljamo, ali bi tudi v primeru zelo slabo zasnovanih tipizacij z metodami nadzorovane klasifikacije lahko izdelali dovolj natancna pravila za dolocanje pokrajinskih tipov. Poskusili smo modelirati dve namenoma popaceni naravnopokrajinski tipizaciji Slovenije. Opazili smo, da zaradi nesmiselnosti popacenih tipizacij metode odlocitvenih dreves sploh niso bile sposobne izdelati pravil za dolocanje pokrajinskih tipov. Z metodami najmanjse razdalje, najvecje verjetnosti in k najbližjih sosedov pa smo sicer uspeli izdelati modelirane popacene tipizacije, a so se te z osnovno popaceno tipizacijo le malo ujemale.","PeriodicalId":52453,"journal":{"name":"Geografski Vestnik","volume":"1997 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessing the impact of input data incongruity in selected quantitative methods for modelling natural landscape typologies\",\"authors\":\"Rok Ciglic\",\"doi\":\"10.3986/gv90107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With supervised classification methods, we can determine classification rules for landscape types of existing landscape typologies. In this article, we analyse whether supervised classification methods could also define adequate rules for landscape types determination in the case of poorly designed typologies. We tried to model two Slovenian intentionally distorted natural landscape typologies. We noted that due to the incongruity of the distorted typologies, decision tree methods were not capable of forming rules for determination of landscape types. Although we did manage to create modelled distorted typologies with minimum distance to means method, maximum likelihood method, and k -nearest neighbours method, they matched the basic distorted typology only slightly. Z metodami nadzorovane klasifikacije lahko za obstojece naravnopokrajinske tipizacije dolocimo klasifikacijska pravila za posamezne pokrajinske tipe. V prispevku razpravljamo, ali bi tudi v primeru zelo slabo zasnovanih tipizacij z metodami nadzorovane klasifikacije lahko izdelali dovolj natancna pravila za dolocanje pokrajinskih tipov. Poskusili smo modelirati dve namenoma popaceni naravnopokrajinski tipizaciji Slovenije. Opazili smo, da zaradi nesmiselnosti popacenih tipizacij metode odlocitvenih dreves sploh niso bile sposobne izdelati pravil za dolocanje pokrajinskih tipov. Z metodami najmanjse razdalje, najvecje verjetnosti in k najbližjih sosedov pa smo sicer uspeli izdelati modelirane popacene tipizacije, a so se te z osnovno popaceno tipizacijo le malo ujemale.\",\"PeriodicalId\":52453,\"journal\":{\"name\":\"Geografski Vestnik\",\"volume\":\"1997 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geografski Vestnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3986/gv90107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geografski Vestnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3986/gv90107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 2
摘要
利用监督分类方法,我们可以确定现有景观类型的景观类型分类规则。在本文中,我们分析了监督分类方法是否也可以在设计不良的类型学的情况下为景观类型的确定定义足够的规则。我们试图模拟斯洛文尼亚两种故意扭曲的自然景观类型。我们注意到,由于扭曲类型的不一致性,决策树方法无法形成确定景观类型的规则。虽然我们确实设法用最小距离均值法、最大似然法和k近邻法创建了建模的扭曲类型学,但它们与基本的扭曲类型学只匹配了一点点。zmetodami nadzorovane klasifikacije lakoza obstojece naravnopokrakajska tipizacije dolocimo klasifikacijska pravila za posamezne pokrajinske tipe。5月1日,在北京,在北京,在北京,在北京,在北京,在北京,在北京,在北京,在北京,在北京,在北京,在北京,在北京,在北京,在北京。在斯洛文尼亚,有两种不同的模型,分别命名为:波拉诺夫波克拉金斯基。Opazili smo, da zaradi nesmiselnosti popacenh tipizacij method odloclocitveni drive spploh niso,而sposobne izdelati pravil za dolocanje pokrajinskih tipov。Z metodami najmanjse razdalje, najvecje verjetnosti in k najbližjih sosedov pa smo - sici delati modelane popacene tipizacje, a so see the Z osnovno popaceno tipizacjo le malo ujemale。
Assessing the impact of input data incongruity in selected quantitative methods for modelling natural landscape typologies
With supervised classification methods, we can determine classification rules for landscape types of existing landscape typologies. In this article, we analyse whether supervised classification methods could also define adequate rules for landscape types determination in the case of poorly designed typologies. We tried to model two Slovenian intentionally distorted natural landscape typologies. We noted that due to the incongruity of the distorted typologies, decision tree methods were not capable of forming rules for determination of landscape types. Although we did manage to create modelled distorted typologies with minimum distance to means method, maximum likelihood method, and k -nearest neighbours method, they matched the basic distorted typology only slightly. Z metodami nadzorovane klasifikacije lahko za obstojece naravnopokrajinske tipizacije dolocimo klasifikacijska pravila za posamezne pokrajinske tipe. V prispevku razpravljamo, ali bi tudi v primeru zelo slabo zasnovanih tipizacij z metodami nadzorovane klasifikacije lahko izdelali dovolj natancna pravila za dolocanje pokrajinskih tipov. Poskusili smo modelirati dve namenoma popaceni naravnopokrajinski tipizaciji Slovenije. Opazili smo, da zaradi nesmiselnosti popacenih tipizacij metode odlocitvenih dreves sploh niso bile sposobne izdelati pravil za dolocanje pokrajinskih tipov. Z metodami najmanjse razdalje, najvecje verjetnosti in k najbližjih sosedov pa smo sicer uspeli izdelati modelirane popacene tipizacije, a so se te z osnovno popaceno tipizacijo le malo ujemale.