Mohamed Boutghatin, Y. Pennec, S. Assaf, Michèle Carette, V. Thomy, A. Akjouj, B. Djafari-Rouhani
{"title":"用于个人热管理的动态热调节光子晶体织物","authors":"Mohamed Boutghatin, Y. Pennec, S. Assaf, Michèle Carette, V. Thomy, A. Akjouj, B. Djafari-Rouhani","doi":"10.1109/SENSORS47087.2021.9639828","DOIUrl":null,"url":null,"abstract":"Personal thermal management represents a new paradigm to reduce the energy consumption, which consists in controlling the temperature around the human body rather than regulating the temperature of the entire residential space. Recent progress in smart textile showed promising radiative heating and cooling performance. However, propositions for double functional textiles, namely cooling and heating, are still limited. We present here a theoretical study of a dynamic thermoregulatory fabric (DTF) able to regulate the human body temperature by adapting its geometry. The DTF is a 2D photonic crystal constituted of an ultra-thin metallic film sandwiched between two temperature-sensitive polymer membranes. The stacked geometry is drilled with air holes according to a triangular array. We demonstrate that the DTF is able to maintain the thermal comfort over a wide range of room’s temperature by dynamically controlling the mid infrared (MIR) radiations of the human body.","PeriodicalId":6775,"journal":{"name":"2021 IEEE Sensors","volume":"38 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic thermoregulatory photonic crystal fabric for personal thermal management\",\"authors\":\"Mohamed Boutghatin, Y. Pennec, S. Assaf, Michèle Carette, V. Thomy, A. Akjouj, B. Djafari-Rouhani\",\"doi\":\"10.1109/SENSORS47087.2021.9639828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Personal thermal management represents a new paradigm to reduce the energy consumption, which consists in controlling the temperature around the human body rather than regulating the temperature of the entire residential space. Recent progress in smart textile showed promising radiative heating and cooling performance. However, propositions for double functional textiles, namely cooling and heating, are still limited. We present here a theoretical study of a dynamic thermoregulatory fabric (DTF) able to regulate the human body temperature by adapting its geometry. The DTF is a 2D photonic crystal constituted of an ultra-thin metallic film sandwiched between two temperature-sensitive polymer membranes. The stacked geometry is drilled with air holes according to a triangular array. We demonstrate that the DTF is able to maintain the thermal comfort over a wide range of room’s temperature by dynamically controlling the mid infrared (MIR) radiations of the human body.\",\"PeriodicalId\":6775,\"journal\":{\"name\":\"2021 IEEE Sensors\",\"volume\":\"38 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSORS47087.2021.9639828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSORS47087.2021.9639828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic thermoregulatory photonic crystal fabric for personal thermal management
Personal thermal management represents a new paradigm to reduce the energy consumption, which consists in controlling the temperature around the human body rather than regulating the temperature of the entire residential space. Recent progress in smart textile showed promising radiative heating and cooling performance. However, propositions for double functional textiles, namely cooling and heating, are still limited. We present here a theoretical study of a dynamic thermoregulatory fabric (DTF) able to regulate the human body temperature by adapting its geometry. The DTF is a 2D photonic crystal constituted of an ultra-thin metallic film sandwiched between two temperature-sensitive polymer membranes. The stacked geometry is drilled with air holes according to a triangular array. We demonstrate that the DTF is able to maintain the thermal comfort over a wide range of room’s temperature by dynamically controlling the mid infrared (MIR) radiations of the human body.