{"title":"遗传和环境对家鼠伯格曼法则和艾伦法则的影响","authors":"Mallory A Ballinger, Michael W Nachman","doi":"10.1086/719028","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractDistinguishing between genetic, environmental, and genotype × environment effects is central to understanding geographic variation in phenotypic clines. Two of the best-documented phenotypic clines are Bergmann's rule and Allen's rule, which describe larger body sizes and shortened extremities in colder climates, respectively. Although numerous studies have found inter- and intraspecific evidence for both ecogeographic patterns, we still have a poor understanding of the extent to which these patterns are driven by genetics, environment, or both. Here, we measured the genetic and environmental contributions to Bergmann's rule and Allen's rule across introduced populations of house mice (<i>Mus musculus domesticus</i>) in the Americas. First, we documented clines for body mass, tail length, and ear length in natural populations and found that these conform to both Bergmann's rule and Allen's rule. We then raised descendants of wild-caught mice in the lab and showed that these differences persisted in a common environment and are heritable, indicating that they have a genetic basis. Finally, using a full-sib design, we reared mice under warm and cold conditions. We found very little plasticity associated with body size, suggesting that Bergmann's rule has been shaped by strong directional selection in house mice. However, extremities showed considerable plasticity, as both tails and ears grew shorter in cold environments. These results indicate that adaptive phenotypic plasticity as well as genetic changes underlie major patterns of clinal variation in house mice and likely facilitated their rapid expansion into new environments across the Americas.</p>","PeriodicalId":47691,"journal":{"name":"Asian Survey","volume":"17 1","pages":"691-704"},"PeriodicalIF":1.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Contribution of Genetic and Environmental Effects to Bergmann's Rule and Allen's Rule in House Mice.\",\"authors\":\"Mallory A Ballinger, Michael W Nachman\",\"doi\":\"10.1086/719028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>AbstractDistinguishing between genetic, environmental, and genotype × environment effects is central to understanding geographic variation in phenotypic clines. Two of the best-documented phenotypic clines are Bergmann's rule and Allen's rule, which describe larger body sizes and shortened extremities in colder climates, respectively. Although numerous studies have found inter- and intraspecific evidence for both ecogeographic patterns, we still have a poor understanding of the extent to which these patterns are driven by genetics, environment, or both. Here, we measured the genetic and environmental contributions to Bergmann's rule and Allen's rule across introduced populations of house mice (<i>Mus musculus domesticus</i>) in the Americas. First, we documented clines for body mass, tail length, and ear length in natural populations and found that these conform to both Bergmann's rule and Allen's rule. We then raised descendants of wild-caught mice in the lab and showed that these differences persisted in a common environment and are heritable, indicating that they have a genetic basis. Finally, using a full-sib design, we reared mice under warm and cold conditions. We found very little plasticity associated with body size, suggesting that Bergmann's rule has been shaped by strong directional selection in house mice. However, extremities showed considerable plasticity, as both tails and ears grew shorter in cold environments. These results indicate that adaptive phenotypic plasticity as well as genetic changes underlie major patterns of clinal variation in house mice and likely facilitated their rapid expansion into new environments across the Americas.</p>\",\"PeriodicalId\":47691,\"journal\":{\"name\":\"Asian Survey\",\"volume\":\"17 1\",\"pages\":\"691-704\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Survey\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1086/719028\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/3/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AREA STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Survey","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1086/719028","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AREA STUDIES","Score":null,"Total":0}
The Contribution of Genetic and Environmental Effects to Bergmann's Rule and Allen's Rule in House Mice.
AbstractDistinguishing between genetic, environmental, and genotype × environment effects is central to understanding geographic variation in phenotypic clines. Two of the best-documented phenotypic clines are Bergmann's rule and Allen's rule, which describe larger body sizes and shortened extremities in colder climates, respectively. Although numerous studies have found inter- and intraspecific evidence for both ecogeographic patterns, we still have a poor understanding of the extent to which these patterns are driven by genetics, environment, or both. Here, we measured the genetic and environmental contributions to Bergmann's rule and Allen's rule across introduced populations of house mice (Mus musculus domesticus) in the Americas. First, we documented clines for body mass, tail length, and ear length in natural populations and found that these conform to both Bergmann's rule and Allen's rule. We then raised descendants of wild-caught mice in the lab and showed that these differences persisted in a common environment and are heritable, indicating that they have a genetic basis. Finally, using a full-sib design, we reared mice under warm and cold conditions. We found very little plasticity associated with body size, suggesting that Bergmann's rule has been shaped by strong directional selection in house mice. However, extremities showed considerable plasticity, as both tails and ears grew shorter in cold environments. These results indicate that adaptive phenotypic plasticity as well as genetic changes underlie major patterns of clinal variation in house mice and likely facilitated their rapid expansion into new environments across the Americas.
期刊介绍:
The only academic journal of its kind produced in the United States, Asian Survey provides a comprehensive retrospective of contemporary international relations within South, Southeast, and East Asian nations. As the Asian community’s matrix of activities becomes increasingly complex, it is essential to have a sourcebook for sound analysis of current events, governmental policies, socio-economic development, and financial institutions. In Asian Survey you’ll find that sourcebook. Asian Survey consistently publishes articles by leading American and foreign scholars, whose views supplement and contest meanings disseminated by the media.