{"title":"多孔硅层效应对晶体硅光电性能的影响","authors":"Mouna Jemli, B. Abdouli, L. Khezami, M. Ben Rabha","doi":"10.1080/10426507.2023.2219805","DOIUrl":null,"url":null,"abstract":"Abstract In this research, we experimentally and numerically demonstrate the beneficial effect of superficial porous silicon layer in the optoelectronics properties of multi-crystalline silicon. The hydrogen and oxygen-rich porous silicon layer was formed using vapor etching method. From laser beam induced current (LBIC) simulations, we found that the hydrogen and oxygen-rich porous silicon layer used in mc-Si surface acts as a good surface passivation and a potential candidate for electronic quality and optoelectronics properties improvement. As a result, the generated current of treated silicon is 5 times greater as compared to reference substrate, which led to a 50% increase of the minority carrier diffusion length, 25% decrease in the recombination velocity of the minority carrier and the reflectivity reduced from 38 to 3% of the related sample. Graphical Abstract","PeriodicalId":20043,"journal":{"name":"Phosphorus Sulfur and Silicon and The Related Elements","volume":"2 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of porous silicon layer effect in optoelectronics properties of crystalline silicon\",\"authors\":\"Mouna Jemli, B. Abdouli, L. Khezami, M. Ben Rabha\",\"doi\":\"10.1080/10426507.2023.2219805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this research, we experimentally and numerically demonstrate the beneficial effect of superficial porous silicon layer in the optoelectronics properties of multi-crystalline silicon. The hydrogen and oxygen-rich porous silicon layer was formed using vapor etching method. From laser beam induced current (LBIC) simulations, we found that the hydrogen and oxygen-rich porous silicon layer used in mc-Si surface acts as a good surface passivation and a potential candidate for electronic quality and optoelectronics properties improvement. As a result, the generated current of treated silicon is 5 times greater as compared to reference substrate, which led to a 50% increase of the minority carrier diffusion length, 25% decrease in the recombination velocity of the minority carrier and the reflectivity reduced from 38 to 3% of the related sample. Graphical Abstract\",\"PeriodicalId\":20043,\"journal\":{\"name\":\"Phosphorus Sulfur and Silicon and The Related Elements\",\"volume\":\"2 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phosphorus Sulfur and Silicon and The Related Elements\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10426507.2023.2219805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phosphorus Sulfur and Silicon and The Related Elements","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10426507.2023.2219805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of porous silicon layer effect in optoelectronics properties of crystalline silicon
Abstract In this research, we experimentally and numerically demonstrate the beneficial effect of superficial porous silicon layer in the optoelectronics properties of multi-crystalline silicon. The hydrogen and oxygen-rich porous silicon layer was formed using vapor etching method. From laser beam induced current (LBIC) simulations, we found that the hydrogen and oxygen-rich porous silicon layer used in mc-Si surface acts as a good surface passivation and a potential candidate for electronic quality and optoelectronics properties improvement. As a result, the generated current of treated silicon is 5 times greater as compared to reference substrate, which led to a 50% increase of the minority carrier diffusion length, 25% decrease in the recombination velocity of the minority carrier and the reflectivity reduced from 38 to 3% of the related sample. Graphical Abstract