带点标签的小建筑物弱监督分割

Jae-Hun Lee, ChanYoung Kim, S. Sull
{"title":"带点标签的小建筑物弱监督分割","authors":"Jae-Hun Lee, ChanYoung Kim, S. Sull","doi":"10.1109/ICCV48922.2021.00731","DOIUrl":null,"url":null,"abstract":"Most supervised image segmentation methods require delicate and time-consuming pixel-level labeling of building or objects, especially for small objects. In this paper, we present a weakly supervised segmentation network for aerial/satellite images, separately considering small and large objects. First, we propose a simple point labeling method for small objects, while large objects are fully labeled. Then, we present a segmentation network trained with a small object mask to separate small and large objects in the loss function. During training, we employ a memory bank to cope with the limited number of point labels. Experiments results with three public datasets demonstrate the feasibility of our approach.","PeriodicalId":6820,"journal":{"name":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"17 1","pages":"7386-7395"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Weakly Supervised Segmentation of Small Buildings with Point Labels\",\"authors\":\"Jae-Hun Lee, ChanYoung Kim, S. Sull\",\"doi\":\"10.1109/ICCV48922.2021.00731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most supervised image segmentation methods require delicate and time-consuming pixel-level labeling of building or objects, especially for small objects. In this paper, we present a weakly supervised segmentation network for aerial/satellite images, separately considering small and large objects. First, we propose a simple point labeling method for small objects, while large objects are fully labeled. Then, we present a segmentation network trained with a small object mask to separate small and large objects in the loss function. During training, we employ a memory bank to cope with the limited number of point labels. Experiments results with three public datasets demonstrate the feasibility of our approach.\",\"PeriodicalId\":6820,\"journal\":{\"name\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"volume\":\"17 1\",\"pages\":\"7386-7395\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/CVF International Conference on Computer Vision (ICCV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV48922.2021.00731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV48922.2021.00731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

大多数监督图像分割方法都需要对建筑物或物体进行精细且耗时的像素级标记,特别是对于小物体。在本文中,我们提出了一个弱监督分割网络的航空/卫星图像,分别考虑小和大目标。首先,我们提出了一种简单的小目标点标记方法,而大目标则完全标记。然后,我们提出了一个用小目标掩码训练的分割网络,在损失函数中分离小目标和大目标。在训练过程中,我们使用记忆库来处理有限数量的点标签。在三个公共数据集上的实验结果证明了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weakly Supervised Segmentation of Small Buildings with Point Labels
Most supervised image segmentation methods require delicate and time-consuming pixel-level labeling of building or objects, especially for small objects. In this paper, we present a weakly supervised segmentation network for aerial/satellite images, separately considering small and large objects. First, we propose a simple point labeling method for small objects, while large objects are fully labeled. Then, we present a segmentation network trained with a small object mask to separate small and large objects in the loss function. During training, we employ a memory bank to cope with the limited number of point labels. Experiments results with three public datasets demonstrate the feasibility of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Naturalistic Physical Adversarial Patch for Object Detectors Polarimetric Helmholtz Stereopsis Deep Transport Network for Unsupervised Video Object Segmentation Real-time Vanishing Point Detector Integrating Under-parameterized RANSAC and Hough Transform Adaptive Label Noise Cleaning with Meta-Supervision for Deep Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1