Chia-Hsiang Lin, J. Bioucas-Dias, Tzu-Hsuan Lin, Yen-Cheng Lin, Chao-Yuan Kao
{"title":"一种高效卫星通信的高光谱压缩感知新方法","authors":"Chia-Hsiang Lin, J. Bioucas-Dias, Tzu-Hsuan Lin, Yen-Cheng Lin, Chao-Yuan Kao","doi":"10.1109/SAM48682.2020.9104363","DOIUrl":null,"url":null,"abstract":"Directly transmitting the huge amount of typical hyperspectral data acquired on satellite to the ground station is inefficient. This paper proposes a new compressed sensing strategy for hyperspectral imagery on spaceborne sensors systems. As the onboard computing/storage resources are limited, e.g., on CubeSat, the measurement strategy should be computationally very light. Furthermore, considering the limited communication bandwidth, a very low sampling rate is desired. Our encoder accounts for these requirements by separately recording the spatial details and the spectral information, both of which essentially require only simple averaging operators. Our measurement strategy naturally induces a reconstruction criterion that can be elegantly interpreted as a well-known fusion problem in satellite remote sensing, allowing the adoption of a convex optimization method for simple and fast decoding. Our method, termed spatial/spectral compressed encoder (SPACE), is experimentally evaluated on real hyperspectral data, showing superior efficacy in terms of both sampling rate and reconstruction accuracy.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"32 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A New Hyperspectral Compressed Sensing Method for Efficient Satellite Communications\",\"authors\":\"Chia-Hsiang Lin, J. Bioucas-Dias, Tzu-Hsuan Lin, Yen-Cheng Lin, Chao-Yuan Kao\",\"doi\":\"10.1109/SAM48682.2020.9104363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Directly transmitting the huge amount of typical hyperspectral data acquired on satellite to the ground station is inefficient. This paper proposes a new compressed sensing strategy for hyperspectral imagery on spaceborne sensors systems. As the onboard computing/storage resources are limited, e.g., on CubeSat, the measurement strategy should be computationally very light. Furthermore, considering the limited communication bandwidth, a very low sampling rate is desired. Our encoder accounts for these requirements by separately recording the spatial details and the spectral information, both of which essentially require only simple averaging operators. Our measurement strategy naturally induces a reconstruction criterion that can be elegantly interpreted as a well-known fusion problem in satellite remote sensing, allowing the adoption of a convex optimization method for simple and fast decoding. Our method, termed spatial/spectral compressed encoder (SPACE), is experimentally evaluated on real hyperspectral data, showing superior efficacy in terms of both sampling rate and reconstruction accuracy.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"32 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New Hyperspectral Compressed Sensing Method for Efficient Satellite Communications
Directly transmitting the huge amount of typical hyperspectral data acquired on satellite to the ground station is inefficient. This paper proposes a new compressed sensing strategy for hyperspectral imagery on spaceborne sensors systems. As the onboard computing/storage resources are limited, e.g., on CubeSat, the measurement strategy should be computationally very light. Furthermore, considering the limited communication bandwidth, a very low sampling rate is desired. Our encoder accounts for these requirements by separately recording the spatial details and the spectral information, both of which essentially require only simple averaging operators. Our measurement strategy naturally induces a reconstruction criterion that can be elegantly interpreted as a well-known fusion problem in satellite remote sensing, allowing the adoption of a convex optimization method for simple and fast decoding. Our method, termed spatial/spectral compressed encoder (SPACE), is experimentally evaluated on real hyperspectral data, showing superior efficacy in terms of both sampling rate and reconstruction accuracy.