[2,3-b:2 ',3 ' -d]噻吩-5,7,12,13-四酮(DNTTRA)及其苯二氮基衍生物的电子吸收光谱和三阶非线性光学性质:DFT计算

IF 2.4 Q3 Computer Science Journal of Theoretical & Computational Chemistry Pub Date : 2020-10-30 DOI:10.4236/cc.2020.84005
Ziran Chen, Yujin Zhang, Zhanrong He, Yonghua Guan, Yuan Li, Hongping Li
{"title":"[2,3-b:2 ',3 ' -d]噻吩-5,7,12,13-四酮(DNTTRA)及其苯二氮基衍生物的电子吸收光谱和三阶非线性光学性质:DFT计算","authors":"Ziran Chen, Yujin Zhang, Zhanrong He, Yonghua Guan, Yuan Li, Hongping Li","doi":"10.4236/cc.2020.84005","DOIUrl":null,"url":null,"abstract":"Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 107 atomic units (10-33 esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH3)2 or -NHCH3) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.","PeriodicalId":49976,"journal":{"name":"Journal of Theoretical & Computational Chemistry","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Electronic Absorption Spectra and Third-Order Nonlinear Optical Property of Dinaphtho[2,3-b:2’,3’-d]Thiophene-5,7,12,13- Tetraone (DNTTRA) and Its Phenyldiazenyl Derivatives: DFT Calculations\",\"authors\":\"Ziran Chen, Yujin Zhang, Zhanrong He, Yonghua Guan, Yuan Li, Hongping Li\",\"doi\":\"10.4236/cc.2020.84005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 107 atomic units (10-33 esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH3)2 or -NHCH3) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.\",\"PeriodicalId\":49976,\"journal\":{\"name\":\"Journal of Theoretical & Computational Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical & Computational Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/cc.2020.84005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical & Computational Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/cc.2020.84005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

三阶非线性光学材料在高密度数据存储、光学计算机、现代激光技术等高新技术产业中有着广阔的应用前景。采用密度泛函理论B3LYP和M06-2X方法计算了含偶氮苯的Dinaphtho[2,3-b:2 ',3 ' -d]噻吩-5,7,12,13-四酮(DNTTRA)及其36个衍生物在6-311++g(d, p)水平上的结构和频率。此外,还分析了自然键轨道(NBO)的原子电荷。利用TD-DFT (TD-B3LYP/6-311++g(d, p))和TD-M06-2X/6-311++g(d, p))计算了A-G5分子的前沿轨道和电子吸收谱。利用有效有限场FF法和自编程序计算了NLO特性。结果表明,这6个系列中有36个分子为D-π-A-π-D结构。D系分子的三阶NLO系数γ(二阶超极化率)在6个系中最大,达到107原子单位(10-33 esu)数量级,表现出良好的三阶NLO性质。最后,通过在偶氮苯环中引入强给电子基团(如-N(CH3)2或-NHCH3),可以改善偶氮苯环的三阶NLO性能,从而得到性能良好的三阶NLO材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Electronic Absorption Spectra and Third-Order Nonlinear Optical Property of Dinaphtho[2,3-b:2’,3’-d]Thiophene-5,7,12,13- Tetraone (DNTTRA) and Its Phenyldiazenyl Derivatives: DFT Calculations
Third-order nonlinear optical (NLO) materials have broad application prospects in high-density data storage, optical computer, modern laser technology, and other high-tech industries. The structures and frequencies of Dinaphtho[2,3-b:2’,3’-d]thiophene-5,7,12,13-tetraone (DNTTRA) and its 36 derivatives containing azobenzene were calculated by using density functional theory B3LYP and M06-2X methods at 6-311++g(d, p) level, respectively. Besides, the atomic charges of natural bond orbitals (NBO) were analyzed. The frontier orbitals and electron absorption spectra of A-G5 molecule were calculated by TD-DFT (TD-B3LYP/6-311++g(d, p) and TD-M06-2X/6-311++g(d, p)). The NLO properties were calculated by effective finite field FF method and self-compiled program. The results show that 36 molecules of these six series are D-π-A-π-D structures. The third-order NLO coefficients γ (second-order hyperpolarizability) of the D series molecules are the largest among the six series, reaching 107 atomic units (10-33 esu) of order of magnitude, showing good third-order NLO properties. Last, the third-order NLO properties of the azobenzene ring can be improved by introducing strong electron donor groups (e.g. -N(CH3)2 or -NHCH3) in the azobenzene ring, so that the third-order NLO materials with good performance can be obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
3 months
期刊介绍: The Journal of Theoretical and Computational Chemistry (JTCC) is an international interdisciplinary journal aimed at providing comprehensive coverage on the latest developments and applications of research in the ever-expanding field of theoretical and computational chemistry. JTCC publishes regular articles and reviews on new methodology, software, web server and database developments. The applications of existing theoretical and computational methods which produce significant new insights into important problems are also welcomed. Papers reporting joint computational and experimental investigations are encouraged. The journal will not consider manuscripts reporting straightforward calculations of the properties of molecules with existing software packages without addressing a significant scientific problem. Areas covered by the journal include molecular dynamics, computer-aided molecular design, modeling effects of mutation on stability and dynamics of macromolecules, quantum mechanics, statistical mechanics and other related topics.
期刊最新文献
A TD-DFT Study for the Excited State Calculations of Microhydration of N-Acetyl-Phenylalaninylamide (NAPA) Design of New Thiadiazole Derivatives with Improved Antidiabetic Activity Designing Artemisinins with Antimalarial Potential, Combining Molecular Electrostatic Potential, Ligand-Heme Interaction and Multivariate Models In Silico Docking of Rhodanine Derivatives and 3D-QSAR Study to Identify Potent Prostate Cancer Inhibitors Mechanism of Degradation of Rice Starch Amylopectin by Oryzenin Using ONIOM Quantum Calculations [DFT/B3LYP/6-31+G(D, P): AM1]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1