{"title":"基于极化能松弛机制的介质闪络新方法","authors":"G. Blaise","doi":"10.1109/14.231522","DOIUrl":null,"url":null,"abstract":"The polaron concept is used to describe trapping of charge in a dielectric medium. It is shown that trapping is associated with defects identified as being due to a local decrease of the electronic polarizability. The polarization energy around a charge is estimated, using a self-consistent calculation of the local field. In nonpolar dielectrics this energy is 5 eV per charge, in the limit of validity of the Clausius-Mosotti relation. In polar dielectrics it can be much higher. A flashover process is proposed as resulting from the destabilization of the space charge by a variety of perturbations (electrical, mechanical, thermal), followed by the mechanical relaxation of the lattice, initially polarized by the charge. >","PeriodicalId":13105,"journal":{"name":"IEEE Transactions on Electrical Insulation","volume":"37 1","pages":"437-443"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"New approach to flashover in dielectrics based on a polarization energy relaxation mechanism\",\"authors\":\"G. Blaise\",\"doi\":\"10.1109/14.231522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The polaron concept is used to describe trapping of charge in a dielectric medium. It is shown that trapping is associated with defects identified as being due to a local decrease of the electronic polarizability. The polarization energy around a charge is estimated, using a self-consistent calculation of the local field. In nonpolar dielectrics this energy is 5 eV per charge, in the limit of validity of the Clausius-Mosotti relation. In polar dielectrics it can be much higher. A flashover process is proposed as resulting from the destabilization of the space charge by a variety of perturbations (electrical, mechanical, thermal), followed by the mechanical relaxation of the lattice, initially polarized by the charge. >\",\"PeriodicalId\":13105,\"journal\":{\"name\":\"IEEE Transactions on Electrical Insulation\",\"volume\":\"37 1\",\"pages\":\"437-443\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electrical Insulation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/14.231522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electrical Insulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/14.231522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New approach to flashover in dielectrics based on a polarization energy relaxation mechanism
The polaron concept is used to describe trapping of charge in a dielectric medium. It is shown that trapping is associated with defects identified as being due to a local decrease of the electronic polarizability. The polarization energy around a charge is estimated, using a self-consistent calculation of the local field. In nonpolar dielectrics this energy is 5 eV per charge, in the limit of validity of the Clausius-Mosotti relation. In polar dielectrics it can be much higher. A flashover process is proposed as resulting from the destabilization of the space charge by a variety of perturbations (electrical, mechanical, thermal), followed by the mechanical relaxation of the lattice, initially polarized by the charge. >