Alexey M Petrov, Guzalia F Zakirjanova, Irina V Kovyazina, Andrei N Tsentsevitsky, Ellya A Bukharaeva
{"title":"肾上腺素能受体控制小鼠运动神经末梢在 \"完全崩溃 \"和 \"亲吻-奔跑 \"之间的频率依赖性外渗模式切换","authors":"Alexey M Petrov, Guzalia F Zakirjanova, Irina V Kovyazina, Andrei N Tsentsevitsky, Ellya A Bukharaeva","doi":"10.1016/j.lfs.2022.120433","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Neurotransmitter release from the synaptic vesicles can occur through two modes of exocytosis: \"full-collapse\" or \"kiss-and-run\". Here we investigated how increasing the nerve activity and pharmacological stimulation of adrenoceptors can influence the mode of exocytosis in the motor nerve terminal.</p><p><strong>Methods: </strong>Recording of endplate potentials with intracellular microelectrodes was used to estimate acetylcholine release. A fluorescent dye FM1-43 and its quenching with sulforhodamine 101 were utilized to visualize synaptic vesicle recycling.</p><p><strong>Key findings: </strong>An increase in the frequency of stimulation led to a decrease in the rate of FM1-43 unloading despite the higher number of quanta released. High frequency activity promoted neurotransmitter release via the kiss-and-run mechanism. This was confirmed by experiments utilizing (I) FM1-43 dye quencher, that is able to pass into the synaptic vesicle via fusion pore, and (II) loading of FM1-43 by compensatory endocytosis. Noradrenaline and specific α2-adrenoreceptors agonist, dexmedetomidine, controlled the mode of synaptic vesicle recycling at high frequency activity. Their applications favored neurotransmitter release via full-collapse exocytosis rather than the kiss-and-run pathway.</p><p><strong>Significance: </strong>At the diaphragm neuromuscular junctions, neuronal commands are translated into contractions necessary for respiration. During stress, an increase in discharge rate of the phrenic nerve shifts the exocytosis from the full-collapse to the kiss-and-run mode. The stress-related molecule, noradrenaline, restricts neurotransmitter release in response to a high frequency activity, and prevents the shift in the mode of exocytosis through α2-adrenoceptor activation. This may be a component of the mechanism that limits overstimulation of the respiratory system during stress.</p>","PeriodicalId":47691,"journal":{"name":"Asian Survey","volume":"4 1","pages":"120433"},"PeriodicalIF":1.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adrenergic receptors control frequency-dependent switching of the exocytosis mode between \\\"full-collapse\\\" and \\\"kiss-and-run\\\" in murine motor nerve terminal.\",\"authors\":\"Alexey M Petrov, Guzalia F Zakirjanova, Irina V Kovyazina, Andrei N Tsentsevitsky, Ellya A Bukharaeva\",\"doi\":\"10.1016/j.lfs.2022.120433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Neurotransmitter release from the synaptic vesicles can occur through two modes of exocytosis: \\\"full-collapse\\\" or \\\"kiss-and-run\\\". Here we investigated how increasing the nerve activity and pharmacological stimulation of adrenoceptors can influence the mode of exocytosis in the motor nerve terminal.</p><p><strong>Methods: </strong>Recording of endplate potentials with intracellular microelectrodes was used to estimate acetylcholine release. A fluorescent dye FM1-43 and its quenching with sulforhodamine 101 were utilized to visualize synaptic vesicle recycling.</p><p><strong>Key findings: </strong>An increase in the frequency of stimulation led to a decrease in the rate of FM1-43 unloading despite the higher number of quanta released. High frequency activity promoted neurotransmitter release via the kiss-and-run mechanism. This was confirmed by experiments utilizing (I) FM1-43 dye quencher, that is able to pass into the synaptic vesicle via fusion pore, and (II) loading of FM1-43 by compensatory endocytosis. Noradrenaline and specific α2-adrenoreceptors agonist, dexmedetomidine, controlled the mode of synaptic vesicle recycling at high frequency activity. Their applications favored neurotransmitter release via full-collapse exocytosis rather than the kiss-and-run pathway.</p><p><strong>Significance: </strong>At the diaphragm neuromuscular junctions, neuronal commands are translated into contractions necessary for respiration. During stress, an increase in discharge rate of the phrenic nerve shifts the exocytosis from the full-collapse to the kiss-and-run mode. The stress-related molecule, noradrenaline, restricts neurotransmitter release in response to a high frequency activity, and prevents the shift in the mode of exocytosis through α2-adrenoceptor activation. This may be a component of the mechanism that limits overstimulation of the respiratory system during stress.</p>\",\"PeriodicalId\":47691,\"journal\":{\"name\":\"Asian Survey\",\"volume\":\"4 1\",\"pages\":\"120433\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Survey\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.lfs.2022.120433\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2022/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"AREA STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Survey","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.lfs.2022.120433","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AREA STUDIES","Score":null,"Total":0}
Adrenergic receptors control frequency-dependent switching of the exocytosis mode between "full-collapse" and "kiss-and-run" in murine motor nerve terminal.
Aims: Neurotransmitter release from the synaptic vesicles can occur through two modes of exocytosis: "full-collapse" or "kiss-and-run". Here we investigated how increasing the nerve activity and pharmacological stimulation of adrenoceptors can influence the mode of exocytosis in the motor nerve terminal.
Methods: Recording of endplate potentials with intracellular microelectrodes was used to estimate acetylcholine release. A fluorescent dye FM1-43 and its quenching with sulforhodamine 101 were utilized to visualize synaptic vesicle recycling.
Key findings: An increase in the frequency of stimulation led to a decrease in the rate of FM1-43 unloading despite the higher number of quanta released. High frequency activity promoted neurotransmitter release via the kiss-and-run mechanism. This was confirmed by experiments utilizing (I) FM1-43 dye quencher, that is able to pass into the synaptic vesicle via fusion pore, and (II) loading of FM1-43 by compensatory endocytosis. Noradrenaline and specific α2-adrenoreceptors agonist, dexmedetomidine, controlled the mode of synaptic vesicle recycling at high frequency activity. Their applications favored neurotransmitter release via full-collapse exocytosis rather than the kiss-and-run pathway.
Significance: At the diaphragm neuromuscular junctions, neuronal commands are translated into contractions necessary for respiration. During stress, an increase in discharge rate of the phrenic nerve shifts the exocytosis from the full-collapse to the kiss-and-run mode. The stress-related molecule, noradrenaline, restricts neurotransmitter release in response to a high frequency activity, and prevents the shift in the mode of exocytosis through α2-adrenoceptor activation. This may be a component of the mechanism that limits overstimulation of the respiratory system during stress.
期刊介绍:
The only academic journal of its kind produced in the United States, Asian Survey provides a comprehensive retrospective of contemporary international relations within South, Southeast, and East Asian nations. As the Asian community’s matrix of activities becomes increasingly complex, it is essential to have a sourcebook for sound analysis of current events, governmental policies, socio-economic development, and financial institutions. In Asian Survey you’ll find that sourcebook. Asian Survey consistently publishes articles by leading American and foreign scholars, whose views supplement and contest meanings disseminated by the media.