用于音频和听力目的的频率控制降噪

IF 0.4 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC EMITTER-International Journal of Engineering Technology Pub Date : 2020-06-02 DOI:10.24003/emitter.v8i1.473
A. Noor
{"title":"用于音频和听力目的的频率控制降噪","authors":"A. Noor","doi":"10.24003/emitter.v8i1.473","DOIUrl":null,"url":null,"abstract":"Methods for hearing aids sought to compensate for loss in hearing by amplifying signals of interest in the audio band. In real-world, audio signals are prone to outdoor noise which can be destructive for hearing aid.  Eliminating interfering noise at high speed and low power consumption became a target for recent researches. Modern hearing compensation technologies use digital signal processing which requires minimum implementation costs to reduce power consumption, as well as avoiding delay in real time processing. In this paper, frequency controlled noise cancellation (FCNC) strategy for hearing aid and audio communication is developed with low complexity and least time delay. The contribution of the current work is made by offering a method that is capable of removing inherent distortion due filter-bank insertion and assigning adaptive filtering to a particular sub-band to remove external noise. The performance of the proposed FCNC was examined under frequency-limited noise, which corrupts particular parts of the audio spectrum. Results showed that the FCNC renders noise-immune audio signals with minimal number of computations and least delay. Mean square error (MSE) plots of the proposed FCNC method reached below -30 dB compared to -25 dB using conventional sub-band method and to -10 dB using standard full-band noise canceller. The proposed FCNC approach gave the lowest number of computations compared to other methods with a total of 346 computations per sample compared to 860 and 512 by conventional sub-band and full-band methods respectively. The time delay using FCNC is the least compared to the other methods.","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":"34 2 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency Controlled Noise Cancellation for Audio and Hearing Purposes\",\"authors\":\"A. Noor\",\"doi\":\"10.24003/emitter.v8i1.473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods for hearing aids sought to compensate for loss in hearing by amplifying signals of interest in the audio band. In real-world, audio signals are prone to outdoor noise which can be destructive for hearing aid.  Eliminating interfering noise at high speed and low power consumption became a target for recent researches. Modern hearing compensation technologies use digital signal processing which requires minimum implementation costs to reduce power consumption, as well as avoiding delay in real time processing. In this paper, frequency controlled noise cancellation (FCNC) strategy for hearing aid and audio communication is developed with low complexity and least time delay. The contribution of the current work is made by offering a method that is capable of removing inherent distortion due filter-bank insertion and assigning adaptive filtering to a particular sub-band to remove external noise. The performance of the proposed FCNC was examined under frequency-limited noise, which corrupts particular parts of the audio spectrum. Results showed that the FCNC renders noise-immune audio signals with minimal number of computations and least delay. Mean square error (MSE) plots of the proposed FCNC method reached below -30 dB compared to -25 dB using conventional sub-band method and to -10 dB using standard full-band noise canceller. The proposed FCNC approach gave the lowest number of computations compared to other methods with a total of 346 computations per sample compared to 860 and 512 by conventional sub-band and full-band methods respectively. The time delay using FCNC is the least compared to the other methods.\",\"PeriodicalId\":40905,\"journal\":{\"name\":\"EMITTER-International Journal of Engineering Technology\",\"volume\":\"34 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMITTER-International Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24003/emitter.v8i1.473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24003/emitter.v8i1.473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

助听器的方法是通过放大音频波段中感兴趣的信号来补偿听力损失。在现实世界中,音频信号容易受到室外噪声的影响,这可能对助听器造成破坏。高速低功耗消除干扰噪声成为当前研究的目标。现代听力补偿技术使用数字信号处理,这需要最小的实施成本来降低功耗,并避免实时处理中的延迟。本文提出了一种用于助听器和音频通信的频率控制降噪(FCNC)策略,该策略具有低复杂度和最小时延。当前工作的贡献在于提供一种方法,该方法能够消除由于滤波器组插入而产生的固有失真,并将自适应滤波分配到特定的子带以去除外部噪声。所提出的FCNC在频率限制噪声下的性能进行了测试,频率限制噪声会破坏音频频谱的特定部分。结果表明,该算法能够以最小的计算量和最小的时延生成抗噪声音频信号。与传统子带方法的-25 dB和标准全带消噪器的-10 dB相比,所提出的FCNC方法的均方误差(MSE)图低于-30 dB。与其他方法相比,所提出的FCNC方法的计算次数最少,每个样本总共计算346次,而传统的子带和全带方法分别为860次和512次。与其他方法相比,FCNC的时间延迟最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Frequency Controlled Noise Cancellation for Audio and Hearing Purposes
Methods for hearing aids sought to compensate for loss in hearing by amplifying signals of interest in the audio band. In real-world, audio signals are prone to outdoor noise which can be destructive for hearing aid.  Eliminating interfering noise at high speed and low power consumption became a target for recent researches. Modern hearing compensation technologies use digital signal processing which requires minimum implementation costs to reduce power consumption, as well as avoiding delay in real time processing. In this paper, frequency controlled noise cancellation (FCNC) strategy for hearing aid and audio communication is developed with low complexity and least time delay. The contribution of the current work is made by offering a method that is capable of removing inherent distortion due filter-bank insertion and assigning adaptive filtering to a particular sub-band to remove external noise. The performance of the proposed FCNC was examined under frequency-limited noise, which corrupts particular parts of the audio spectrum. Results showed that the FCNC renders noise-immune audio signals with minimal number of computations and least delay. Mean square error (MSE) plots of the proposed FCNC method reached below -30 dB compared to -25 dB using conventional sub-band method and to -10 dB using standard full-band noise canceller. The proposed FCNC approach gave the lowest number of computations compared to other methods with a total of 346 computations per sample compared to 860 and 512 by conventional sub-band and full-band methods respectively. The time delay using FCNC is the least compared to the other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EMITTER-International Journal of Engineering Technology
EMITTER-International Journal of Engineering Technology ENGINEERING, ELECTRICAL & ELECTRONIC-
自引率
0.00%
发文量
7
审稿时长
12 weeks
期刊最新文献
Hardware Trojan Detection and Mitigation in NoC using Key authentication and Obfuscation Techniques Estimation of Confidence in the Dialogue based on Eye Gaze and Head Movement Information Experimental Study of Hydroformed Al6061T4 Elliptical Tube Samples under Different Internal Pressures Numerical Study of a Wind Turbine Blade Modification Using 30° Angle Winglet on Clark Y Foil 3D Visualization for Lung Surface Images of Covid-19 Patients based on U-Net CNN Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1