{"title":"在模式电荷纳米管中控制水流","authors":"R. Zhang, G. Du, Mei Fen Wang, Song Yuan Li","doi":"10.4028/p-29104k","DOIUrl":null,"url":null,"abstract":"Molecular dynamics simulation is used to study the water flow in a charged nanotube. The simulation results show that the charge patterns on the nanotube have an important role in determining the flow behavior. In a nanotube charged with one pattern, the water flow rate decreases with increasing charge value, when the charge value increases from 0 to 0.8 e, the water flow rate decreases to 7%. While in the other one with a different charge pattern, the water flow rate is independent of charge value. By analyzing the morphology of water molecules, it is determined that this unexpected phenomenon is caused by the structure of water molecules near the nanotube wall. For the first charge pattern, the network of hydrogen bonds formed by water molecules near the wall had a hexagonal structure, similar to single layer ice, which changes the interactions between the wall and the water molecules. By contrast, the second pattern did not exhibit such an effect. This study provides a means to control the rate of water flow in nanotubes using an electric field. These results may provide new insights and lead to new methods for flow control in complex micro- or nanofluidic systems.","PeriodicalId":16525,"journal":{"name":"Journal of Nano Research","volume":"18 1","pages":"1 - 10"},"PeriodicalIF":0.8000,"publicationDate":"2022-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Controlling Water Flow in Pattern-Charged Nanotubes\",\"authors\":\"R. Zhang, G. Du, Mei Fen Wang, Song Yuan Li\",\"doi\":\"10.4028/p-29104k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Molecular dynamics simulation is used to study the water flow in a charged nanotube. The simulation results show that the charge patterns on the nanotube have an important role in determining the flow behavior. In a nanotube charged with one pattern, the water flow rate decreases with increasing charge value, when the charge value increases from 0 to 0.8 e, the water flow rate decreases to 7%. While in the other one with a different charge pattern, the water flow rate is independent of charge value. By analyzing the morphology of water molecules, it is determined that this unexpected phenomenon is caused by the structure of water molecules near the nanotube wall. For the first charge pattern, the network of hydrogen bonds formed by water molecules near the wall had a hexagonal structure, similar to single layer ice, which changes the interactions between the wall and the water molecules. By contrast, the second pattern did not exhibit such an effect. This study provides a means to control the rate of water flow in nanotubes using an electric field. These results may provide new insights and lead to new methods for flow control in complex micro- or nanofluidic systems.\",\"PeriodicalId\":16525,\"journal\":{\"name\":\"Journal of Nano Research\",\"volume\":\"18 1\",\"pages\":\"1 - 10\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nano Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4028/p-29104k\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4028/p-29104k","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Controlling Water Flow in Pattern-Charged Nanotubes
Molecular dynamics simulation is used to study the water flow in a charged nanotube. The simulation results show that the charge patterns on the nanotube have an important role in determining the flow behavior. In a nanotube charged with one pattern, the water flow rate decreases with increasing charge value, when the charge value increases from 0 to 0.8 e, the water flow rate decreases to 7%. While in the other one with a different charge pattern, the water flow rate is independent of charge value. By analyzing the morphology of water molecules, it is determined that this unexpected phenomenon is caused by the structure of water molecules near the nanotube wall. For the first charge pattern, the network of hydrogen bonds formed by water molecules near the wall had a hexagonal structure, similar to single layer ice, which changes the interactions between the wall and the water molecules. By contrast, the second pattern did not exhibit such an effect. This study provides a means to control the rate of water flow in nanotubes using an electric field. These results may provide new insights and lead to new methods for flow control in complex micro- or nanofluidic systems.
期刊介绍:
"Journal of Nano Research" (JNanoR) is a multidisciplinary journal, which publishes high quality scientific and engineering papers on all aspects of research in the area of nanoscience and nanotechnologies and wide practical application of achieved results.
"Journal of Nano Research" is one of the largest periodicals in the field of nanoscience and nanotechnologies. All papers are peer-reviewed and edited.
Authors retain the right to publish an extended and significantly updated version in another periodical.