Chantana Aiempanakit, Pathomporn Junbang, Watchara Suphap, K. Aiempanakit
{"title":"水含量对阳极氧化法制备TiO2纳米管结构和电致变色性能的影响","authors":"Chantana Aiempanakit, Pathomporn Junbang, Watchara Suphap, K. Aiempanakit","doi":"10.55713/jmmm.v33i3.1680","DOIUrl":null,"url":null,"abstract":"TiO2 nanotubes (TNTs) and bamboo-type TNTs structure films were synthesized via anodization from sputtered titanium (Ti) films on indium tin oxide (ITO) glass. Herein, the anodization process was adjusted electrolyte with different amounts of deionized water and ethylene glycol. The optical and structural properties of all films before and after annealing were investigated, which affected electrochromic application. The increasing deionized water content in electrolytes resulted in an increase in the average diameter and a decrease in the average length of TNTs. Furthermore, the bamboo-type TNTs structure was produced at the deionized water volume condition of 3 vol%. The crystallite size of annealed TNTs (a-TNTs) was calculated from the Scherrer equation, which was enhanced when increasing deionized water. TNTs conditions before annealing showed that the amorphous structure and high energy band gap (Eg) exhibited more electrochromic phenomena than the crystal structure. Due to the disordered arrangement of structures, it was easy to insert ions in TNTs. The bamboo-like structure with separate tubes increased the surface area of the reaction, thus exhibiting the best electrochromic properties with ΔT equal to 12.58%.","PeriodicalId":16459,"journal":{"name":"Journal of metals, materials and minerals","volume":"7 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of water content on structural and electrochromic properties of TiO2 nanotube prepared by anodization\",\"authors\":\"Chantana Aiempanakit, Pathomporn Junbang, Watchara Suphap, K. Aiempanakit\",\"doi\":\"10.55713/jmmm.v33i3.1680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"TiO2 nanotubes (TNTs) and bamboo-type TNTs structure films were synthesized via anodization from sputtered titanium (Ti) films on indium tin oxide (ITO) glass. Herein, the anodization process was adjusted electrolyte with different amounts of deionized water and ethylene glycol. The optical and structural properties of all films before and after annealing were investigated, which affected electrochromic application. The increasing deionized water content in electrolytes resulted in an increase in the average diameter and a decrease in the average length of TNTs. Furthermore, the bamboo-type TNTs structure was produced at the deionized water volume condition of 3 vol%. The crystallite size of annealed TNTs (a-TNTs) was calculated from the Scherrer equation, which was enhanced when increasing deionized water. TNTs conditions before annealing showed that the amorphous structure and high energy band gap (Eg) exhibited more electrochromic phenomena than the crystal structure. Due to the disordered arrangement of structures, it was easy to insert ions in TNTs. The bamboo-like structure with separate tubes increased the surface area of the reaction, thus exhibiting the best electrochromic properties with ΔT equal to 12.58%.\",\"PeriodicalId\":16459,\"journal\":{\"name\":\"Journal of metals, materials and minerals\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of metals, materials and minerals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55713/jmmm.v33i3.1680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of metals, materials and minerals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55713/jmmm.v33i3.1680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of water content on structural and electrochromic properties of TiO2 nanotube prepared by anodization
TiO2 nanotubes (TNTs) and bamboo-type TNTs structure films were synthesized via anodization from sputtered titanium (Ti) films on indium tin oxide (ITO) glass. Herein, the anodization process was adjusted electrolyte with different amounts of deionized water and ethylene glycol. The optical and structural properties of all films before and after annealing were investigated, which affected electrochromic application. The increasing deionized water content in electrolytes resulted in an increase in the average diameter and a decrease in the average length of TNTs. Furthermore, the bamboo-type TNTs structure was produced at the deionized water volume condition of 3 vol%. The crystallite size of annealed TNTs (a-TNTs) was calculated from the Scherrer equation, which was enhanced when increasing deionized water. TNTs conditions before annealing showed that the amorphous structure and high energy band gap (Eg) exhibited more electrochromic phenomena than the crystal structure. Due to the disordered arrangement of structures, it was easy to insert ions in TNTs. The bamboo-like structure with separate tubes increased the surface area of the reaction, thus exhibiting the best electrochromic properties with ΔT equal to 12.58%.
期刊介绍:
Journal of Metals, Materials and Minerals (JMMM) is a double-blind peer-reviewed international journal published 4 issues per year (starting from 2019), in March, June, September, and December, aims at disseminating advanced knowledge in the fields to academia, professionals and industrialists. JMMM publishes original research articles as well as review articles related to research and development in science, technology and engineering of metals, materials and minerals, including composite & hybrid materials, concrete and cement-based systems, ceramics, glass, refractory, semiconductors, polymeric & polymer-based materials, conventional & technical textiles, nanomaterials, thin films, biomaterials, and functional materials.