Guoqiang Zhou, Yan Zhang, Jianming Xia, Zhirong Zheng, Shangjun Wang
{"title":"掺杂al的Fe3O4纳米颗粒对水溶液中锑的高效去除:吸附行为和动力学研究","authors":"Guoqiang Zhou, Yan Zhang, Jianming Xia, Zhirong Zheng, Shangjun Wang","doi":"10.1080/01496395.2023.2217339","DOIUrl":null,"url":null,"abstract":"ABSTRACT Fe3O4 magnetic nanoparticles have been employed as a cost-effective adsorbent for removing Sb from aqueous solutions. However, the widespread application is limited by its finite adsorption capacity and aggregation nature. In this study, Al-doped Fe3O4 nanoparticles were prepared via a facile solvothermal method to break through the current obstacle. Al-doped Fe3O4 nanoparticles were fully characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron microscopy (SEM), and infrared spectroscopy (FTIR). The results confirmed that Al atoms had been successfully doped into Fe3O4 crystal unit cells, resulting in smaller particle size, larger surface area, and higher isoelectric point. These changes led to the formation of more hydroxyl groups on the surface of Al-doped Fe3O4 nanoparticles. Compared to pristine Fe3O4, the maximum adsorption capacity toward Sb(III) and Sb(V) increased from 111.695 to 197.034 mg/g and from 34.479 to 187.459 mg/g at neutral pH, respectively. The doping of Al also had some negative impact on the original magnetic strength but still maintained a sufficient magnetic separation potential. These results indicated that Al-doped Fe3O4 nanoparticles could be employed as a promising adsorbent for removing Sb(III) and Sb(V) from wastewater.","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":"57 1","pages":"1908 - 1922"},"PeriodicalIF":2.3000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient removal of antimony from aqueous solution using Al-doped Fe3O4 nanoparticles: adsorption behavior and kinetics study\",\"authors\":\"Guoqiang Zhou, Yan Zhang, Jianming Xia, Zhirong Zheng, Shangjun Wang\",\"doi\":\"10.1080/01496395.2023.2217339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Fe3O4 magnetic nanoparticles have been employed as a cost-effective adsorbent for removing Sb from aqueous solutions. However, the widespread application is limited by its finite adsorption capacity and aggregation nature. In this study, Al-doped Fe3O4 nanoparticles were prepared via a facile solvothermal method to break through the current obstacle. Al-doped Fe3O4 nanoparticles were fully characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron microscopy (SEM), and infrared spectroscopy (FTIR). The results confirmed that Al atoms had been successfully doped into Fe3O4 crystal unit cells, resulting in smaller particle size, larger surface area, and higher isoelectric point. These changes led to the formation of more hydroxyl groups on the surface of Al-doped Fe3O4 nanoparticles. Compared to pristine Fe3O4, the maximum adsorption capacity toward Sb(III) and Sb(V) increased from 111.695 to 197.034 mg/g and from 34.479 to 187.459 mg/g at neutral pH, respectively. The doping of Al also had some negative impact on the original magnetic strength but still maintained a sufficient magnetic separation potential. These results indicated that Al-doped Fe3O4 nanoparticles could be employed as a promising adsorbent for removing Sb(III) and Sb(V) from wastewater.\",\"PeriodicalId\":21680,\"journal\":{\"name\":\"Separation Science and Technology\",\"volume\":\"57 1\",\"pages\":\"1908 - 1922\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/01496395.2023.2217339\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01496395.2023.2217339","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient removal of antimony from aqueous solution using Al-doped Fe3O4 nanoparticles: adsorption behavior and kinetics study
ABSTRACT Fe3O4 magnetic nanoparticles have been employed as a cost-effective adsorbent for removing Sb from aqueous solutions. However, the widespread application is limited by its finite adsorption capacity and aggregation nature. In this study, Al-doped Fe3O4 nanoparticles were prepared via a facile solvothermal method to break through the current obstacle. Al-doped Fe3O4 nanoparticles were fully characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning Electron microscopy (SEM), and infrared spectroscopy (FTIR). The results confirmed that Al atoms had been successfully doped into Fe3O4 crystal unit cells, resulting in smaller particle size, larger surface area, and higher isoelectric point. These changes led to the formation of more hydroxyl groups on the surface of Al-doped Fe3O4 nanoparticles. Compared to pristine Fe3O4, the maximum adsorption capacity toward Sb(III) and Sb(V) increased from 111.695 to 197.034 mg/g and from 34.479 to 187.459 mg/g at neutral pH, respectively. The doping of Al also had some negative impact on the original magnetic strength but still maintained a sufficient magnetic separation potential. These results indicated that Al-doped Fe3O4 nanoparticles could be employed as a promising adsorbent for removing Sb(III) and Sb(V) from wastewater.
期刊介绍:
This international journal deals with fundamental and applied aspects of separation processes related to a number of fields. A wide range of topics are covered in the journal including adsorption, membranes, extraction, distillation, absorption, centrifugation, crystallization, precipitation, reactive separations, hybrid processes, continuous separations, carbon capture, flocculation and magnetic separations. The journal focuses on state of the art preparative separations and theoretical contributions to the field of separation science. Applications include environmental, energy, water, and biotechnology. The journal does not publish analytical separation papers unless they contain new fundamental contributions to the field of separation science.