内压对管道弯曲模态的激发:一种存在于带蒙皮冷凝器的冰箱中的现象

IF 1 3区 物理与天体物理 Q4 ACOUSTICS Acta Acustica Pub Date : 2022-01-01 DOI:10.1051/aacus/2022027
Ricardo Luís Schaefer, A. Lenzi
{"title":"内压对管道弯曲模态的激发:一种存在于带蒙皮冷凝器的冰箱中的现象","authors":"Ricardo Luís Schaefer, A. Lenzi","doi":"10.1051/aacus/2022027","DOIUrl":null,"url":null,"abstract":"The concept of skin condenser refrigerators has been increasingly explored for its capacity to provide a larger internal cabinet volume. However, the discharge pulsation of the cooling gas has become a significant source of noise because it directly excites the cabinet. This paper analyzes the mechanisms of cabinet vibration excitation by gas pulsation in the condenser tubes. Initial tests were performed with vibration measurements on a refrigerator and on segments of the cabinet excited by pulsation only. The results showed that bending modes of cabinet segments were excited by the pulsation in the condenser tube. A theoretical analysis showed that asymmetry in the condenser tube cross section is responsible for bending moment generation and numerical evaluations confirmed this effect for different types of asymmetries.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Excitation of pipe bending modes by internal pressure: A phenomenon present in refrigerators with skin condenser\",\"authors\":\"Ricardo Luís Schaefer, A. Lenzi\",\"doi\":\"10.1051/aacus/2022027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of skin condenser refrigerators has been increasingly explored for its capacity to provide a larger internal cabinet volume. However, the discharge pulsation of the cooling gas has become a significant source of noise because it directly excites the cabinet. This paper analyzes the mechanisms of cabinet vibration excitation by gas pulsation in the condenser tubes. Initial tests were performed with vibration measurements on a refrigerator and on segments of the cabinet excited by pulsation only. The results showed that bending modes of cabinet segments were excited by the pulsation in the condenser tube. A theoretical analysis showed that asymmetry in the condenser tube cross section is responsible for bending moment generation and numerical evaluations confirmed this effect for different types of asymmetries.\",\"PeriodicalId\":48486,\"journal\":{\"name\":\"Acta Acustica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/aacus/2022027\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2022027","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

由于能够提供更大的内部柜体体积,蒙皮冷凝器制冷机的概念得到了越来越多的探索。然而,冷却气体的放电脉动由于直接激励箱体而成为一个重要的噪声源。分析了凝汽器管内气体脉动激发柜体振动的机理。最初的试验是通过对冰箱和仅受脉动激励的柜体部分进行振动测量来进行的。结果表明:冷凝器管内的脉动激发了箱体管片的弯曲模态;理论分析表明,凝汽器管截面的不对称是产生弯矩的主要原因,数值计算证实了不同类型的不对称对弯矩产生的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Excitation of pipe bending modes by internal pressure: A phenomenon present in refrigerators with skin condenser
The concept of skin condenser refrigerators has been increasingly explored for its capacity to provide a larger internal cabinet volume. However, the discharge pulsation of the cooling gas has become a significant source of noise because it directly excites the cabinet. This paper analyzes the mechanisms of cabinet vibration excitation by gas pulsation in the condenser tubes. Initial tests were performed with vibration measurements on a refrigerator and on segments of the cabinet excited by pulsation only. The results showed that bending modes of cabinet segments were excited by the pulsation in the condenser tube. A theoretical analysis showed that asymmetry in the condenser tube cross section is responsible for bending moment generation and numerical evaluations confirmed this effect for different types of asymmetries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Acustica
Acta Acustica ACOUSTICS-
CiteScore
2.80
自引率
21.40%
发文量
0
审稿时长
12 weeks
期刊介绍: Acta Acustica, the Journal of the European Acoustics Association (EAA). After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges. Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.
期刊最新文献
Auralization based on multi-perspective ambisonic room impulse responses Amplitude-dependent modal coefficients accounting for localized nonlinear losses in a time-domain integration of woodwind model A direct-hybrid CFD/CAA method based on lattice Boltzmann and acoustic perturbation equations Acta Acustica: State of art and achievements after 3 years Impact of wearing a head-mounted display on localization accuracy of real sound sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1