F. Henríquez, D. Hernández, Felipe Varas-Concha, Camila Gutierrez, Héctor Quinteros-Lama, J. O. Morales-Ferreiro
{"title":"住宅柴火炉燃烧桉叶的挥发性有机化合物和PM清单","authors":"F. Henríquez, D. Hernández, Felipe Varas-Concha, Camila Gutierrez, Héctor Quinteros-Lama, J. O. Morales-Ferreiro","doi":"10.4067/s0718-221x2023000100412","DOIUrl":null,"url":null,"abstract":"Pollutant residential emissions from wood stoves have significant impacts both on the environment and people’s health. The above makes it essential to know the types of volatile organic compounds emitted during combustion and explore their relationship with particulate matter and greenhouse gas emissions. This paper studies and analyzes these emissions using Eucalyptus globulus as fuel varying its moisture levels. Emissions were determined using an adapted commercial stove. The concentration levels of volatile organic compounds and particulate matter increase with the moisture of wood. When analyzing volatile organic compounds, particulate matter, and O 2 with the combustion stages of wood, it is found that their concentrations were higher in the ignition and the reload stage. The concentrations of CO 2 and NO x were higher in the reload stage. Other chemical compounds, such as toluene, xylene, and benzene, were also found within the volatile organic compounds listing, which increased their concentration in the ignition and stable reload stages. However, in the quenching stage, they are not present. Finally, the dispersion of these molecules in the environment is evaluated, obtaining that if the atmospheric conditions are adverse, these molecules remain in the environment in direct contact with the people living in those places.","PeriodicalId":18092,"journal":{"name":"Maderas-ciencia Y Tecnologia","volume":"17 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VOCs and PM listing of Eucalyptus globulus combustion in residential wood stoves\",\"authors\":\"F. Henríquez, D. Hernández, Felipe Varas-Concha, Camila Gutierrez, Héctor Quinteros-Lama, J. O. Morales-Ferreiro\",\"doi\":\"10.4067/s0718-221x2023000100412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pollutant residential emissions from wood stoves have significant impacts both on the environment and people’s health. The above makes it essential to know the types of volatile organic compounds emitted during combustion and explore their relationship with particulate matter and greenhouse gas emissions. This paper studies and analyzes these emissions using Eucalyptus globulus as fuel varying its moisture levels. Emissions were determined using an adapted commercial stove. The concentration levels of volatile organic compounds and particulate matter increase with the moisture of wood. When analyzing volatile organic compounds, particulate matter, and O 2 with the combustion stages of wood, it is found that their concentrations were higher in the ignition and the reload stage. The concentrations of CO 2 and NO x were higher in the reload stage. Other chemical compounds, such as toluene, xylene, and benzene, were also found within the volatile organic compounds listing, which increased their concentration in the ignition and stable reload stages. However, in the quenching stage, they are not present. Finally, the dispersion of these molecules in the environment is evaluated, obtaining that if the atmospheric conditions are adverse, these molecules remain in the environment in direct contact with the people living in those places.\",\"PeriodicalId\":18092,\"journal\":{\"name\":\"Maderas-ciencia Y Tecnologia\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Maderas-ciencia Y Tecnologia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.4067/s0718-221x2023000100412\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, PAPER & WOOD\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maderas-ciencia Y Tecnologia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.4067/s0718-221x2023000100412","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
VOCs and PM listing of Eucalyptus globulus combustion in residential wood stoves
Pollutant residential emissions from wood stoves have significant impacts both on the environment and people’s health. The above makes it essential to know the types of volatile organic compounds emitted during combustion and explore their relationship with particulate matter and greenhouse gas emissions. This paper studies and analyzes these emissions using Eucalyptus globulus as fuel varying its moisture levels. Emissions were determined using an adapted commercial stove. The concentration levels of volatile organic compounds and particulate matter increase with the moisture of wood. When analyzing volatile organic compounds, particulate matter, and O 2 with the combustion stages of wood, it is found that their concentrations were higher in the ignition and the reload stage. The concentrations of CO 2 and NO x were higher in the reload stage. Other chemical compounds, such as toluene, xylene, and benzene, were also found within the volatile organic compounds listing, which increased their concentration in the ignition and stable reload stages. However, in the quenching stage, they are not present. Finally, the dispersion of these molecules in the environment is evaluated, obtaining that if the atmospheric conditions are adverse, these molecules remain in the environment in direct contact with the people living in those places.
期刊介绍:
Maderas-Cienc Tecnol publishes inedits and original research articles in Spanish and English. The contributions for their publication should be unpublished and the journal is reserved all the rights of reproduction of the content of the same ones. All the articles are subjected to evaluation to the Publishing Committee or external consultants. At least two reviewers under double blind system. Previous acceptance of the Publishing Committee, summaries of thesis of Magíster and Doctorate are also published, technical opinions, revision of books and reports of congresses, related with the Science and the Technology of the Wood. The journal have not articles processing and submission charges.