{"title":"含空位辐射饱和条件下球形铁纳米颗粒的相稳定性","authors":"A. Shirinyan, Y. Bilogorodskyy, O. Krit","doi":"10.15407/jnpae2022.04.255","DOIUrl":null,"url":null,"abstract":"A new thermodynamic approach for phase stability of a nanoscale material under irradiation taking into account Gibbs free energy of phase formation and nucleation is proposed. The influence of powder dispersion and vacancy saturation on the radiation stability and phase changes of spherical Ferrum nanoparticles during irradiation is determined. The paper shows the possibility of a radiation-induced α-Fe → γ-Fe polymorphic transition, and also defines the radiation stability zones of Ferrum nanoparticles. It is shown that the competition between the energy of the accumulated vacancies in the particle, the bulk energy of the phase transformation, and the surface energy of the particle is responsible for the specific behavior of irradiated nanocrystalline Ferrum.","PeriodicalId":42588,"journal":{"name":"Nuclear Physics and Atomic Energy","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2022-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase stability of spherical Ferrum nanoparticles under radiation saturation with vacancies\",\"authors\":\"A. Shirinyan, Y. Bilogorodskyy, O. Krit\",\"doi\":\"10.15407/jnpae2022.04.255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new thermodynamic approach for phase stability of a nanoscale material under irradiation taking into account Gibbs free energy of phase formation and nucleation is proposed. The influence of powder dispersion and vacancy saturation on the radiation stability and phase changes of spherical Ferrum nanoparticles during irradiation is determined. The paper shows the possibility of a radiation-induced α-Fe → γ-Fe polymorphic transition, and also defines the radiation stability zones of Ferrum nanoparticles. It is shown that the competition between the energy of the accumulated vacancies in the particle, the bulk energy of the phase transformation, and the surface energy of the particle is responsible for the specific behavior of irradiated nanocrystalline Ferrum.\",\"PeriodicalId\":42588,\"journal\":{\"name\":\"Nuclear Physics and Atomic Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics and Atomic Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/jnpae2022.04.255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics and Atomic Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/jnpae2022.04.255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Phase stability of spherical Ferrum nanoparticles under radiation saturation with vacancies
A new thermodynamic approach for phase stability of a nanoscale material under irradiation taking into account Gibbs free energy of phase formation and nucleation is proposed. The influence of powder dispersion and vacancy saturation on the radiation stability and phase changes of spherical Ferrum nanoparticles during irradiation is determined. The paper shows the possibility of a radiation-induced α-Fe → γ-Fe polymorphic transition, and also defines the radiation stability zones of Ferrum nanoparticles. It is shown that the competition between the energy of the accumulated vacancies in the particle, the bulk energy of the phase transformation, and the surface energy of the particle is responsible for the specific behavior of irradiated nanocrystalline Ferrum.
期刊介绍:
The journal Nuclear Physics and Atomic Energy presents the publications on Nuclear Physics, Atomic Energy, Radiation Physics, Radioecology, Engineering and Methods of Experiment. The journal includes peer-reviewed articles which are completed works containing new results of theoretical and experimental researches and are of interest for the scientists, postgraduate students, engineers and for the senior students.