CuFe2O4纳米颗粒/离子液体修饰碳糊电极用于食品中香兰素的电化学传感器

IF 2.9 Q2 ELECTROCHEMISTRY Journal of Electrochemical Science and Engineering Pub Date : 2022-09-08 DOI:10.5599/jese.1395
Afsaneh Hajializadeh
{"title":"CuFe2O4纳米颗粒/离子液体修饰碳糊电极用于食品中香兰素的电化学传感器","authors":"Afsaneh Hajializadeh","doi":"10.5599/jese.1395","DOIUrl":null,"url":null,"abstract":"A highly selective electrochemical sensor modified with CuFe2O4 nanoparticles and the ionic liquid was constructed for the detection of vanillin. The sensor could recognize vanillin from its analogs and possible coexistent substances. The response peak current and vanillin concen­tration showed a good linear relationship in the range of 0.01 - 300.0 μM, with a sensitivity of 0.0923 μA μM-1. The detection limit was 0.008 μM (S/N = 3). Besides, the reproducibility and stability measurements were also evaluated. It was applied to the determination of vanillin in real samples with satisfactory results.","PeriodicalId":15660,"journal":{"name":"Journal of Electrochemical Science and Engineering","volume":"125 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An electrochemical sensor for detection of vanillin in food samples using CuFe2O4 nanoparticles/ionic liquids modified carbon paste electrode\",\"authors\":\"Afsaneh Hajializadeh\",\"doi\":\"10.5599/jese.1395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A highly selective electrochemical sensor modified with CuFe2O4 nanoparticles and the ionic liquid was constructed for the detection of vanillin. The sensor could recognize vanillin from its analogs and possible coexistent substances. The response peak current and vanillin concen­tration showed a good linear relationship in the range of 0.01 - 300.0 μM, with a sensitivity of 0.0923 μA μM-1. The detection limit was 0.008 μM (S/N = 3). Besides, the reproducibility and stability measurements were also evaluated. It was applied to the determination of vanillin in real samples with satisfactory results.\",\"PeriodicalId\":15660,\"journal\":{\"name\":\"Journal of Electrochemical Science and Engineering\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrochemical Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5599/jese.1395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrochemical Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5599/jese.1395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 2

摘要

采用CuFe2O4纳米颗粒和离子液体修饰了一种高选择性的电化学传感器,用于香兰素的检测。该传感器可以从类似物和可能存在的物质中识别香兰素。响应峰电流与香兰素浓度在0.01 ~ 300.0 μM范围内呈良好的线性关系,灵敏度为0.0923 μA μM-1。检出限为0.008 μM (S/N = 3),并对其重复性和稳定性进行了评价。应用于实际样品中香兰素的测定,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An electrochemical sensor for detection of vanillin in food samples using CuFe2O4 nanoparticles/ionic liquids modified carbon paste electrode
A highly selective electrochemical sensor modified with CuFe2O4 nanoparticles and the ionic liquid was constructed for the detection of vanillin. The sensor could recognize vanillin from its analogs and possible coexistent substances. The response peak current and vanillin concen­tration showed a good linear relationship in the range of 0.01 - 300.0 μM, with a sensitivity of 0.0923 μA μM-1. The detection limit was 0.008 μM (S/N = 3). Besides, the reproducibility and stability measurements were also evaluated. It was applied to the determination of vanillin in real samples with satisfactory results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
27.30%
发文量
90
审稿时长
6 weeks
期刊最新文献
Synthesis of graphene by electrochemical exfoliation from petroleum coke for electrochemical energy storage application Primary aluminum-air flow battery for high-power applications: Optimization of power and self-discharge Electrocatalytic response of nitrogen-doped hollow carbon spheres modified glassy carbon electrode for sulphite detection in water A model of chronoamperometry of a two electrons electro-deposition reaction with the adsorption of intermediate Computational materials discovery and development for Li and non-Li advanced battery chemistries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1