{"title":"空气中局部放电光学检测的替代方法","authors":"O. Šefl, R. Prochazka, R. Haller, G. Monkman","doi":"10.1109/CEIDP50766.2021.9705350","DOIUrl":null,"url":null,"abstract":"This article compares the standard electrical method of partial discharge detection with a novel optical detection method based on silicon photomultipliers. A third, complementary, single-loop antenna method is added to represent the ultra-high frequency method commonly used in gas-insulated switchgear/lines. A trio of air-insulated electrode designs that simulate the fundamental fault/discharge types in gaseous insulation (protrusion – corona discharge, floating conductive particle, surface discharges) are employed. Phase-resolved partial discharge activity patterns are compiled for each electrode design. The patterns are analyzed using spatial statistics and the interpretation of the obtained data trends explained by means of an example. Ultimately, the consistency and reliability of discharge detection by the optical methods for each fault/discharge type are evaluated, and suggestions for improvement are made.","PeriodicalId":6837,"journal":{"name":"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","volume":"2 1","pages":"324-327"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Alternative Approach to Optical Detection of Partial Discharges in Air\",\"authors\":\"O. Šefl, R. Prochazka, R. Haller, G. Monkman\",\"doi\":\"10.1109/CEIDP50766.2021.9705350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article compares the standard electrical method of partial discharge detection with a novel optical detection method based on silicon photomultipliers. A third, complementary, single-loop antenna method is added to represent the ultra-high frequency method commonly used in gas-insulated switchgear/lines. A trio of air-insulated electrode designs that simulate the fundamental fault/discharge types in gaseous insulation (protrusion – corona discharge, floating conductive particle, surface discharges) are employed. Phase-resolved partial discharge activity patterns are compiled for each electrode design. The patterns are analyzed using spatial statistics and the interpretation of the obtained data trends explained by means of an example. Ultimately, the consistency and reliability of discharge detection by the optical methods for each fault/discharge type are evaluated, and suggestions for improvement are made.\",\"PeriodicalId\":6837,\"journal\":{\"name\":\"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)\",\"volume\":\"2 1\",\"pages\":\"324-327\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIDP50766.2021.9705350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP50766.2021.9705350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alternative Approach to Optical Detection of Partial Discharges in Air
This article compares the standard electrical method of partial discharge detection with a novel optical detection method based on silicon photomultipliers. A third, complementary, single-loop antenna method is added to represent the ultra-high frequency method commonly used in gas-insulated switchgear/lines. A trio of air-insulated electrode designs that simulate the fundamental fault/discharge types in gaseous insulation (protrusion – corona discharge, floating conductive particle, surface discharges) are employed. Phase-resolved partial discharge activity patterns are compiled for each electrode design. The patterns are analyzed using spatial statistics and the interpretation of the obtained data trends explained by means of an example. Ultimately, the consistency and reliability of discharge detection by the optical methods for each fault/discharge type are evaluated, and suggestions for improvement are made.