{"title":"混合多谐模型用于预测个体耳后助听器相关传递函数的耳间时差","authors":"Florian Pausch, S. Doma, J. Fels","doi":"10.1051/aacus/2022020","DOIUrl":null,"url":null,"abstract":"Spatial sound perception in aided listeners partly relies on hearing-aid-related transfer functions (HARTFs), describing the directional acoustic paths between a sound source and the hearing-aid (HA) microphones. Compared to head-related transfer functions (HRTFs), the HARTFs of behind-the-ear HAs exhibit substantial differences in spectro-temporal characteristics and binaural cues such as interaural time differences (ITDs). Since assumptions on antipodal microphone placement on the equator of a three-concentric sphere are violated in such datasets, predicting the ITDs via Kuhn’s simple analytic harmonic model entails excessive errors. Although angular ear-canal offsets have been addressed in an extended Woodworth model, the prediction errors remain large if the frequency range does not comply with the model specifications. Tuned to the previously inaccurately modelled frequency range between 500 Hz and 1.5 kHz, we propose a hybrid multi-harmonic model to predict the ITDs in HRTFs and HARTFs for arbitrary directions in the horizontal plane with superior accuracy. The target model coefficients are derived from individual directional measurements of 30 adults, wearing two dual-microphone behind-the-ear HAs and two in-ear microphones. Model individualisation is facilitated by the availability of polynomial weights that are applied to subsets of individual anthropometric and HA features to estimate the target model coefficients. The model is published as part of the Auditory Modeling Toolbox (AMT, pausch2022) and supplemented with the individual features and directional datasets.","PeriodicalId":48486,"journal":{"name":"Acta Acustica","volume":"45 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hybrid multi-harmonic model for the prediction of interaural time differences in individual behind-the-ear hearing-aid-related transfer functions\",\"authors\":\"Florian Pausch, S. Doma, J. Fels\",\"doi\":\"10.1051/aacus/2022020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial sound perception in aided listeners partly relies on hearing-aid-related transfer functions (HARTFs), describing the directional acoustic paths between a sound source and the hearing-aid (HA) microphones. Compared to head-related transfer functions (HRTFs), the HARTFs of behind-the-ear HAs exhibit substantial differences in spectro-temporal characteristics and binaural cues such as interaural time differences (ITDs). Since assumptions on antipodal microphone placement on the equator of a three-concentric sphere are violated in such datasets, predicting the ITDs via Kuhn’s simple analytic harmonic model entails excessive errors. Although angular ear-canal offsets have been addressed in an extended Woodworth model, the prediction errors remain large if the frequency range does not comply with the model specifications. Tuned to the previously inaccurately modelled frequency range between 500 Hz and 1.5 kHz, we propose a hybrid multi-harmonic model to predict the ITDs in HRTFs and HARTFs for arbitrary directions in the horizontal plane with superior accuracy. The target model coefficients are derived from individual directional measurements of 30 adults, wearing two dual-microphone behind-the-ear HAs and two in-ear microphones. Model individualisation is facilitated by the availability of polynomial weights that are applied to subsets of individual anthropometric and HA features to estimate the target model coefficients. The model is published as part of the Auditory Modeling Toolbox (AMT, pausch2022) and supplemented with the individual features and directional datasets.\",\"PeriodicalId\":48486,\"journal\":{\"name\":\"Acta Acustica\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Acustica\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1051/aacus/2022020\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Acustica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1051/aacus/2022020","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
Hybrid multi-harmonic model for the prediction of interaural time differences in individual behind-the-ear hearing-aid-related transfer functions
Spatial sound perception in aided listeners partly relies on hearing-aid-related transfer functions (HARTFs), describing the directional acoustic paths between a sound source and the hearing-aid (HA) microphones. Compared to head-related transfer functions (HRTFs), the HARTFs of behind-the-ear HAs exhibit substantial differences in spectro-temporal characteristics and binaural cues such as interaural time differences (ITDs). Since assumptions on antipodal microphone placement on the equator of a three-concentric sphere are violated in such datasets, predicting the ITDs via Kuhn’s simple analytic harmonic model entails excessive errors. Although angular ear-canal offsets have been addressed in an extended Woodworth model, the prediction errors remain large if the frequency range does not comply with the model specifications. Tuned to the previously inaccurately modelled frequency range between 500 Hz and 1.5 kHz, we propose a hybrid multi-harmonic model to predict the ITDs in HRTFs and HARTFs for arbitrary directions in the horizontal plane with superior accuracy. The target model coefficients are derived from individual directional measurements of 30 adults, wearing two dual-microphone behind-the-ear HAs and two in-ear microphones. Model individualisation is facilitated by the availability of polynomial weights that are applied to subsets of individual anthropometric and HA features to estimate the target model coefficients. The model is published as part of the Auditory Modeling Toolbox (AMT, pausch2022) and supplemented with the individual features and directional datasets.
期刊介绍:
Acta Acustica, the Journal of the European Acoustics Association (EAA).
After the publication of its Journal Acta Acustica from 1993 to 1995, the EAA published Acta Acustica united with Acustica from 1996 to 2019. From 2020, the EAA decided to publish a journal in full Open Access. See Article Processing charges.
Acta Acustica reports on original scientific research in acoustics and on engineering applications. The journal considers review papers, scientific papers, technical and applied papers, short communications, letters to the editor. From time to time, special issues and review articles are also published. For book reviews or doctoral thesis abstracts, please contact the Editor in Chief.