{"title":"构造几何与平行公设","authors":"M. Beeson","doi":"10.1017/BSL.2015.41","DOIUrl":null,"url":null,"abstract":"Euclidean geometry consists of straightedge-and-compass constructions and reasoning about the results of those constructions. We show that Euclidean geometry can be developed using only intuitionistic logic. We consider three versions of Euclid's parallel postulate: Euclid's own formulation in his Postulate 5; Playfair's 1795 version, and a new version we call the strong parallel postulate. These differ in that Euclid's version and the new version both assert the existence of a point where two lines meet, while Playfair's version makes no existence assertion. Classically, the models of Euclidean (straightedge-and-compass) geometry are planes over Euclidean fields. We prove a similar theorem for constructive Euclidean geometry, by showing how to define addition and multiplication without a case distinction about the sign of the arguments. With intuitionistic logic, there are two possible definitions of Euclidean fields, which turn out to correspond to the different versions of the parallel axiom. In this paper, we completely settle the questions about implications between the three versions of the parallel postulate: the strong parallel postulate easily implies Euclid 5, and in fact Euclid 5 also implies the strong parallel postulate, although the proof is lengthy, depending on the verification that Euclid 5 suffices to define multiplication geometrically. We show that Playfair does not imply Euclid 5, and we also give some other independence results. Our independence proofs are given without discussing the exact choice of the other axioms of geometry; all we need is that one can interpret the geometric axioms in Euclidean field theory. The proofs use Kripke models of Euclidean field theories based on carefully constructed rings of real-valued functions.","PeriodicalId":55307,"journal":{"name":"Bulletin of Symbolic Logic","volume":"1 1","pages":"1-104"},"PeriodicalIF":0.7000,"publicationDate":"2014-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Constructive Geometry and the Parallel postulate\",\"authors\":\"M. Beeson\",\"doi\":\"10.1017/BSL.2015.41\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Euclidean geometry consists of straightedge-and-compass constructions and reasoning about the results of those constructions. We show that Euclidean geometry can be developed using only intuitionistic logic. We consider three versions of Euclid's parallel postulate: Euclid's own formulation in his Postulate 5; Playfair's 1795 version, and a new version we call the strong parallel postulate. These differ in that Euclid's version and the new version both assert the existence of a point where two lines meet, while Playfair's version makes no existence assertion. Classically, the models of Euclidean (straightedge-and-compass) geometry are planes over Euclidean fields. We prove a similar theorem for constructive Euclidean geometry, by showing how to define addition and multiplication without a case distinction about the sign of the arguments. With intuitionistic logic, there are two possible definitions of Euclidean fields, which turn out to correspond to the different versions of the parallel axiom. In this paper, we completely settle the questions about implications between the three versions of the parallel postulate: the strong parallel postulate easily implies Euclid 5, and in fact Euclid 5 also implies the strong parallel postulate, although the proof is lengthy, depending on the verification that Euclid 5 suffices to define multiplication geometrically. We show that Playfair does not imply Euclid 5, and we also give some other independence results. Our independence proofs are given without discussing the exact choice of the other axioms of geometry; all we need is that one can interpret the geometric axioms in Euclidean field theory. The proofs use Kripke models of Euclidean field theories based on carefully constructed rings of real-valued functions.\",\"PeriodicalId\":55307,\"journal\":{\"name\":\"Bulletin of Symbolic Logic\",\"volume\":\"1 1\",\"pages\":\"1-104\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2014-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/BSL.2015.41\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Symbolic Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/BSL.2015.41","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
Euclidean geometry consists of straightedge-and-compass constructions and reasoning about the results of those constructions. We show that Euclidean geometry can be developed using only intuitionistic logic. We consider three versions of Euclid's parallel postulate: Euclid's own formulation in his Postulate 5; Playfair's 1795 version, and a new version we call the strong parallel postulate. These differ in that Euclid's version and the new version both assert the existence of a point where two lines meet, while Playfair's version makes no existence assertion. Classically, the models of Euclidean (straightedge-and-compass) geometry are planes over Euclidean fields. We prove a similar theorem for constructive Euclidean geometry, by showing how to define addition and multiplication without a case distinction about the sign of the arguments. With intuitionistic logic, there are two possible definitions of Euclidean fields, which turn out to correspond to the different versions of the parallel axiom. In this paper, we completely settle the questions about implications between the three versions of the parallel postulate: the strong parallel postulate easily implies Euclid 5, and in fact Euclid 5 also implies the strong parallel postulate, although the proof is lengthy, depending on the verification that Euclid 5 suffices to define multiplication geometrically. We show that Playfair does not imply Euclid 5, and we also give some other independence results. Our independence proofs are given without discussing the exact choice of the other axioms of geometry; all we need is that one can interpret the geometric axioms in Euclidean field theory. The proofs use Kripke models of Euclidean field theories based on carefully constructed rings of real-valued functions.
期刊介绍:
The Bulletin of Symbolic Logic was established in 1995 by the Association for Symbolic Logic to provide a journal of high standards that would be both accessible and of interest to as wide an audience as possible. It is designed to cover all areas within the purview of the ASL: mathematical logic and its applications, philosophical and non-classical logic and its applications, history and philosophy of logic, and philosophy and methodology of mathematics.