镍基合金中具有缓裂效应的时效裂纹扩展预测

R. H. Stone, D. Slavik
{"title":"镍基合金中具有缓裂效应的时效裂纹扩展预测","authors":"R. H. Stone, D. Slavik","doi":"10.1520/STP14812S","DOIUrl":null,"url":null,"abstract":"Accurate crack growth prediction methods are playing an increasing role in the design and evaluation of rotating gas turbine engine components. Fracture mechanics methods used to predict the cyclic lives (without time-dependent effects) are well established. As mission times and temperature increase, nickel base superalloys experience time-dependent crack growth where the crack growth response is a function of time under load (hold time) as well as overpeaks that occur prior to hold times. Linear elastic fracture mechanics methods have been developed that accurately predict the acceleration associated with hold times at elevated temperatures using a linear superposition of cyclic and static crack growth rates. The beneficial effects of retardation induced by overpeaks can be predicted using a modified Willenborg retardation model. Results of subcomponent validation tests for a variety of conditions and materials used to validate these methods are reported. Applicability of these model to predict complex missions and combinations of complex missions is also discussed.","PeriodicalId":8583,"journal":{"name":"ASTM special technical publications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Prediction of time-dependent crack growth with retardation effects in nickel base alloys\",\"authors\":\"R. H. Stone, D. Slavik\",\"doi\":\"10.1520/STP14812S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate crack growth prediction methods are playing an increasing role in the design and evaluation of rotating gas turbine engine components. Fracture mechanics methods used to predict the cyclic lives (without time-dependent effects) are well established. As mission times and temperature increase, nickel base superalloys experience time-dependent crack growth where the crack growth response is a function of time under load (hold time) as well as overpeaks that occur prior to hold times. Linear elastic fracture mechanics methods have been developed that accurately predict the acceleration associated with hold times at elevated temperatures using a linear superposition of cyclic and static crack growth rates. The beneficial effects of retardation induced by overpeaks can be predicted using a modified Willenborg retardation model. Results of subcomponent validation tests for a variety of conditions and materials used to validate these methods are reported. Applicability of these model to predict complex missions and combinations of complex missions is also discussed.\",\"PeriodicalId\":8583,\"journal\":{\"name\":\"ASTM special technical publications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASTM special technical publications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1520/STP14812S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTM special technical publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/STP14812S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

精确的裂纹扩展预测方法在旋转燃气轮机部件的设计和评价中发挥着越来越重要的作用。用于预测循环寿命(不受时间影响)的断裂力学方法已经得到了很好的建立。随着任务时间和温度的增加,镍基高温合金的裂纹扩展经历了时间依赖性,其中裂纹扩展响应是载荷下时间(保持时间)的函数,以及在保持时间之前出现的过峰。线性弹性断裂力学方法已经开发出来,通过循环和静态裂纹扩展速率的线性叠加,可以准确预测高温下与保持时间相关的加速度。使用改进的Willenborg延迟模型可以预测由过峰引起的延迟的有益影响。报告了用于验证这些方法的各种条件和材料的子组件验证试验的结果。讨论了这些模型在复杂任务和复杂任务组合预测中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prediction of time-dependent crack growth with retardation effects in nickel base alloys
Accurate crack growth prediction methods are playing an increasing role in the design and evaluation of rotating gas turbine engine components. Fracture mechanics methods used to predict the cyclic lives (without time-dependent effects) are well established. As mission times and temperature increase, nickel base superalloys experience time-dependent crack growth where the crack growth response is a function of time under load (hold time) as well as overpeaks that occur prior to hold times. Linear elastic fracture mechanics methods have been developed that accurately predict the acceleration associated with hold times at elevated temperatures using a linear superposition of cyclic and static crack growth rates. The beneficial effects of retardation induced by overpeaks can be predicted using a modified Willenborg retardation model. Results of subcomponent validation tests for a variety of conditions and materials used to validate these methods are reported. Applicability of these model to predict complex missions and combinations of complex missions is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transmission Electron Microscopy Examinations of Metal-Oxide Interface of Zirconium-Based Alloys Irradiated in Halden Reactor-IFA-638 Translation of International Snow-Sports Equipment Standards into Injury-Prevention Practice Evaluation of Ski-Binding-Boot System Safety Using Torque Testing Influence of Sn on Deformation Mechanisms During Room Temperature Compression of Binary Zr–Sn Alloys Life Prediction Tool for Ceramic Matrix Composites at Elevated Temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1