{"title":"一种具有对称解耦结构的低噪声体微机械陀螺仪","authors":"Hong Chen, Xiaowei Liu, Mingxue Huo, Weiping Chen","doi":"10.1109/NEMS.2006.334729","DOIUrl":null,"url":null,"abstract":"This paper presents a low noise bulk micromachined gyroscope. The design of frame and independent beams reduces the mechanical coupling between the drive mode and sense mode, and facilitate the frequency match of two modes. The gyroscope with a 100-120-mum-structure thickness and an aspect ratio about 12 is fabricated by DRIE technology and silicon-glass anodic bonding, which provides a high sense capacitance about 2.1 pF and a weighty proof mass about 1.27 mg. Resonant frequencies of the drive and sense mode are measured to be 1610 and 1676 Hz, respectively. The gyroscope can achieve a 2.97 muN electrostatic driving force by applying of a 6V AC and 15V DC bias voltage on the driving electrodes. The thermal-mechanical noise floor is estimated to be about 0.12deg/h/Hzfrac12 at atmospheric pressure","PeriodicalId":6362,"journal":{"name":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"72 1","pages":"306-309"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Low Noise Bulk Micromachined Gyroscope with Symmetrical and Decoupled Structure\",\"authors\":\"Hong Chen, Xiaowei Liu, Mingxue Huo, Weiping Chen\",\"doi\":\"10.1109/NEMS.2006.334729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a low noise bulk micromachined gyroscope. The design of frame and independent beams reduces the mechanical coupling between the drive mode and sense mode, and facilitate the frequency match of two modes. The gyroscope with a 100-120-mum-structure thickness and an aspect ratio about 12 is fabricated by DRIE technology and silicon-glass anodic bonding, which provides a high sense capacitance about 2.1 pF and a weighty proof mass about 1.27 mg. Resonant frequencies of the drive and sense mode are measured to be 1610 and 1676 Hz, respectively. The gyroscope can achieve a 2.97 muN electrostatic driving force by applying of a 6V AC and 15V DC bias voltage on the driving electrodes. The thermal-mechanical noise floor is estimated to be about 0.12deg/h/Hzfrac12 at atmospheric pressure\",\"PeriodicalId\":6362,\"journal\":{\"name\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"volume\":\"72 1\",\"pages\":\"306-309\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEMS.2006.334729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEMS.2006.334729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Low Noise Bulk Micromachined Gyroscope with Symmetrical and Decoupled Structure
This paper presents a low noise bulk micromachined gyroscope. The design of frame and independent beams reduces the mechanical coupling between the drive mode and sense mode, and facilitate the frequency match of two modes. The gyroscope with a 100-120-mum-structure thickness and an aspect ratio about 12 is fabricated by DRIE technology and silicon-glass anodic bonding, which provides a high sense capacitance about 2.1 pF and a weighty proof mass about 1.27 mg. Resonant frequencies of the drive and sense mode are measured to be 1610 and 1676 Hz, respectively. The gyroscope can achieve a 2.97 muN electrostatic driving force by applying of a 6V AC and 15V DC bias voltage on the driving electrodes. The thermal-mechanical noise floor is estimated to be about 0.12deg/h/Hzfrac12 at atmospheric pressure