铸态Ni-Ru-Zr合金的硬度特性

IF 0.9 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING Journal of Mining and Metallurgy Section B-Metallurgy Pub Date : 2021-01-01 DOI:10.2298/JMMB200307022C
L. Chipise, N. R. Batane, P. Jain, S. Coetzee, B. Odera, W. Goosen, L. Cornish
{"title":"铸态Ni-Ru-Zr合金的硬度特性","authors":"L. Chipise, N. R. Batane, P. Jain, S. Coetzee, B. Odera, W. Goosen, L. Cornish","doi":"10.2298/JMMB200307022C","DOIUrl":null,"url":null,"abstract":"The Vickers hardnesses of 21 as-cast Ni-Ru-Zr alloys of different compositions were studied, and nanohardness indentations were done on the individual phases. The results were used to explain the brittleness by assessing the proportions of the phases, and their morphologies. The compound hardnesses varied between 704 - 1289 HV, with ~ZrRu2 being the hardest phase, and ~Zr2Ni7 being the least hard phase. The sample hardnesses were 300 - 1015 HV. Most of the samples were brittle, although there were regions of toughness around Ni36:Ru13:Zr51 and Ni20:Ru5:Zr75 (at.%). No alloy was identified to have potential good mechanical properties.","PeriodicalId":51090,"journal":{"name":"Journal of Mining and Metallurgy Section B-Metallurgy","volume":"4 1","pages":"22-22"},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardness characteristics of as-cast Ni-Ru-Zr alloys\",\"authors\":\"L. Chipise, N. R. Batane, P. Jain, S. Coetzee, B. Odera, W. Goosen, L. Cornish\",\"doi\":\"10.2298/JMMB200307022C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Vickers hardnesses of 21 as-cast Ni-Ru-Zr alloys of different compositions were studied, and nanohardness indentations were done on the individual phases. The results were used to explain the brittleness by assessing the proportions of the phases, and their morphologies. The compound hardnesses varied between 704 - 1289 HV, with ~ZrRu2 being the hardest phase, and ~Zr2Ni7 being the least hard phase. The sample hardnesses were 300 - 1015 HV. Most of the samples were brittle, although there were regions of toughness around Ni36:Ru13:Zr51 and Ni20:Ru5:Zr75 (at.%). No alloy was identified to have potential good mechanical properties.\",\"PeriodicalId\":51090,\"journal\":{\"name\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"volume\":\"4 1\",\"pages\":\"22-22\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mining and Metallurgy Section B-Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.2298/JMMB200307022C\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mining and Metallurgy Section B-Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2298/JMMB200307022C","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

研究了21种不同成分的铸态Ni-Ru-Zr合金的维氏硬度,并对各相进行了纳米硬度压痕分析。结果被用来通过评估相的比例和它们的形态来解释脆性。复合硬度在704 ~ 1289 HV之间变化,其中~ZrRu2相硬度最高,~Zr2Ni7相硬度最低。样品硬度为300 ~ 1015hv。Ni36:Ru13:Zr51和Ni20:Ru5:Zr75 (at.%)附近有韧性区,但大部分样品呈脆性。没有发现有潜在良好力学性能的合金。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardness characteristics of as-cast Ni-Ru-Zr alloys
The Vickers hardnesses of 21 as-cast Ni-Ru-Zr alloys of different compositions were studied, and nanohardness indentations were done on the individual phases. The results were used to explain the brittleness by assessing the proportions of the phases, and their morphologies. The compound hardnesses varied between 704 - 1289 HV, with ~ZrRu2 being the hardest phase, and ~Zr2Ni7 being the least hard phase. The sample hardnesses were 300 - 1015 HV. Most of the samples were brittle, although there were regions of toughness around Ni36:Ru13:Zr51 and Ni20:Ru5:Zr75 (at.%). No alloy was identified to have potential good mechanical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
40.00%
发文量
19
审稿时长
2 months
期刊介绍: University of Belgrade, Technical Faculty in Bor, has been publishing the journal called Journal of Mining and Metallurgy since 1965 and in 1997 it was divided in two independent journals dealing with mining and metallurgy separately. Since 2009 Journal of Mining and Metallurgy, Section B: Metallurgy has been accepted in Science Citation Index Expanded. Journal of Mining and Metallurgy, Section B: Metallurgy presents an international medium for the publication of contributions on original research which reflect the new progresses in theory and practice of metallurgy. The Journal covers the latest research in all aspects of metallurgy including hydrometallurgy, pyrometallurgy, electrometallurgy, transport phenomena, process control, solidification, mechanical working, solid state reactions, materials processing, surface treatment and relationships among processing, structure, and properties of materials.
期刊最新文献
The melting performance of high alumina blast furnace slags Recovery of Li, Mn, and Fe from LiFePO4/LiMn2O4 mixed waste lithium-ion battery cathode materials Modeling of partial reduction of hematite with carbon-monoxide in tunnel furnace Study on the drying characteristics of green pellets of ultrafine iron ore concentrate Effect of extrusion process on the stress corrosion cracking resistance of 7N01 aluminum alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1