H. Esmaeilzadeh, Emily R. Blem, R. S. Amant, K. Sankaralingam, D. Burger
{"title":"功率限制和暗硅挑战多核的未来","authors":"H. Esmaeilzadeh, Emily R. Blem, R. S. Amant, K. Sankaralingam, D. Burger","doi":"10.1145/2324876.2324879","DOIUrl":null,"url":null,"abstract":"Since 2004, processor designers have increased core counts to exploit Moore’s Law scaling, rather than focusing on single-core performance. The failure of Dennard scaling, to which the shift to multicore parts is partially a response, may soon limit multicore scaling just as single-core scaling has been curtailed. This paper models multicore scaling limits by combining device scaling, single-core scaling, and multicore scaling to measure the speedup potential for a set of parallel workloads for the next five technology generations. For device scaling, we use both the ITRS projections and a set of more conservative device scaling parameters. To model single-core scaling, we combine measurements from over 150 processors to derive Pareto-optimal frontiers for area/performance and power/performance. Finally, to model multicore scaling, we build a detailed performance model of upper-bound performance and lower-bound core power. The multicore designs we study include single-threaded CPU-like and massively threaded GPU-like multicore chip organizations with symmetric, asymmetric, dynamic, and composed topologies. The study shows that regardless of chip organization and topology, multicore scaling is power limited to a degree not widely appreciated by the computing community. Even at 22 nm (just one year from now), 21% of a fixed-size chip must be powered off, and at 8 nm, this number grows to more than 50%. Through 2024, only 7.9× average speedup is possible across commonly used parallel workloads for the topologies we study, leaving a nearly 24-fold gap from a target of doubled performance per generation.","PeriodicalId":50918,"journal":{"name":"ACM Transactions on Computer Systems","volume":"1 1","pages":"11:1-11:27"},"PeriodicalIF":2.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Power Limitations and Dark Silicon Challenge the Future of Multicore\",\"authors\":\"H. Esmaeilzadeh, Emily R. Blem, R. S. Amant, K. Sankaralingam, D. Burger\",\"doi\":\"10.1145/2324876.2324879\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since 2004, processor designers have increased core counts to exploit Moore’s Law scaling, rather than focusing on single-core performance. The failure of Dennard scaling, to which the shift to multicore parts is partially a response, may soon limit multicore scaling just as single-core scaling has been curtailed. This paper models multicore scaling limits by combining device scaling, single-core scaling, and multicore scaling to measure the speedup potential for a set of parallel workloads for the next five technology generations. For device scaling, we use both the ITRS projections and a set of more conservative device scaling parameters. To model single-core scaling, we combine measurements from over 150 processors to derive Pareto-optimal frontiers for area/performance and power/performance. Finally, to model multicore scaling, we build a detailed performance model of upper-bound performance and lower-bound core power. The multicore designs we study include single-threaded CPU-like and massively threaded GPU-like multicore chip organizations with symmetric, asymmetric, dynamic, and composed topologies. The study shows that regardless of chip organization and topology, multicore scaling is power limited to a degree not widely appreciated by the computing community. Even at 22 nm (just one year from now), 21% of a fixed-size chip must be powered off, and at 8 nm, this number grows to more than 50%. Through 2024, only 7.9× average speedup is possible across commonly used parallel workloads for the topologies we study, leaving a nearly 24-fold gap from a target of doubled performance per generation.\",\"PeriodicalId\":50918,\"journal\":{\"name\":\"ACM Transactions on Computer Systems\",\"volume\":\"1 1\",\"pages\":\"11:1-11:27\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computer Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2324876.2324879\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computer Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2324876.2324879","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Power Limitations and Dark Silicon Challenge the Future of Multicore
Since 2004, processor designers have increased core counts to exploit Moore’s Law scaling, rather than focusing on single-core performance. The failure of Dennard scaling, to which the shift to multicore parts is partially a response, may soon limit multicore scaling just as single-core scaling has been curtailed. This paper models multicore scaling limits by combining device scaling, single-core scaling, and multicore scaling to measure the speedup potential for a set of parallel workloads for the next five technology generations. For device scaling, we use both the ITRS projections and a set of more conservative device scaling parameters. To model single-core scaling, we combine measurements from over 150 processors to derive Pareto-optimal frontiers for area/performance and power/performance. Finally, to model multicore scaling, we build a detailed performance model of upper-bound performance and lower-bound core power. The multicore designs we study include single-threaded CPU-like and massively threaded GPU-like multicore chip organizations with symmetric, asymmetric, dynamic, and composed topologies. The study shows that regardless of chip organization and topology, multicore scaling is power limited to a degree not widely appreciated by the computing community. Even at 22 nm (just one year from now), 21% of a fixed-size chip must be powered off, and at 8 nm, this number grows to more than 50%. Through 2024, only 7.9× average speedup is possible across commonly used parallel workloads for the topologies we study, leaving a nearly 24-fold gap from a target of doubled performance per generation.
期刊介绍:
ACM Transactions on Computer Systems (TOCS) presents research and development results on the design, implementation, analysis, evaluation, and use of computer systems and systems software. The term "computer systems" is interpreted broadly and includes operating systems, systems architecture and hardware, distributed systems, optimizing compilers, and the interaction between systems and computer networks. Articles appearing in TOCS will tend either to present new techniques and concepts, or to report on experiences and experiments with actual systems. Insights useful to system designers, builders, and users will be emphasized.
TOCS publishes research and technical papers, both short and long. It includes technical correspondence to permit commentary on technical topics and on previously published papers.