{"title":"马狂犬病免疫球蛋白单辛酸分离与离心分离的研究","authors":"Issada Manohorratad, A. Senjuntichai","doi":"10.4186/ej.2021.25.11.33","DOIUrl":null,"url":null,"abstract":"This study proposes alternative caprylic acid precipitation and centrifugal separation for the equine rabies Immunoglobulin manufacturing process. The objective is to determine the optimal setting associated with the centrifugal machine and the optimal amount of caprylic acid for the maximum process yield (%). The experiments were designed based on the central composite design and performed to analyze the relationship of three factors which are the caprylic acid (1%-5%V/V), the rotation speed (7,500-12,500 rpm), and centrifugal time (20-40 min) on the yield of the process. For the first time, the prediction model as a second-degree polynomial regression is presented and developed by a response surface method (RSM) with R2 approximately 51%. RSM model also reveals that the process yield is affected by the concentration of caprylic acid and the amount of time to centrifuge the precipitated plasma but not by the rotation speed of the centrifugal machine. With the predicted process yield of about 12.97%, the optimal setting by RSM suggests the concentration of caprylic acid at 2.82% and the centrifugal time at 28 minutes.","PeriodicalId":32885,"journal":{"name":"AlKhawarizmi Engineering Journal","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Study on the Single Caprylic Acid Fractionation and Centrifugal Separation of Equine Rabies Immunoglobulin\",\"authors\":\"Issada Manohorratad, A. Senjuntichai\",\"doi\":\"10.4186/ej.2021.25.11.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes alternative caprylic acid precipitation and centrifugal separation for the equine rabies Immunoglobulin manufacturing process. The objective is to determine the optimal setting associated with the centrifugal machine and the optimal amount of caprylic acid for the maximum process yield (%). The experiments were designed based on the central composite design and performed to analyze the relationship of three factors which are the caprylic acid (1%-5%V/V), the rotation speed (7,500-12,500 rpm), and centrifugal time (20-40 min) on the yield of the process. For the first time, the prediction model as a second-degree polynomial regression is presented and developed by a response surface method (RSM) with R2 approximately 51%. RSM model also reveals that the process yield is affected by the concentration of caprylic acid and the amount of time to centrifuge the precipitated plasma but not by the rotation speed of the centrifugal machine. With the predicted process yield of about 12.97%, the optimal setting by RSM suggests the concentration of caprylic acid at 2.82% and the centrifugal time at 28 minutes.\",\"PeriodicalId\":32885,\"journal\":{\"name\":\"AlKhawarizmi Engineering Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AlKhawarizmi Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4186/ej.2021.25.11.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AlKhawarizmi Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4186/ej.2021.25.11.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Study on the Single Caprylic Acid Fractionation and Centrifugal Separation of Equine Rabies Immunoglobulin
This study proposes alternative caprylic acid precipitation and centrifugal separation for the equine rabies Immunoglobulin manufacturing process. The objective is to determine the optimal setting associated with the centrifugal machine and the optimal amount of caprylic acid for the maximum process yield (%). The experiments were designed based on the central composite design and performed to analyze the relationship of three factors which are the caprylic acid (1%-5%V/V), the rotation speed (7,500-12,500 rpm), and centrifugal time (20-40 min) on the yield of the process. For the first time, the prediction model as a second-degree polynomial regression is presented and developed by a response surface method (RSM) with R2 approximately 51%. RSM model also reveals that the process yield is affected by the concentration of caprylic acid and the amount of time to centrifuge the precipitated plasma but not by the rotation speed of the centrifugal machine. With the predicted process yield of about 12.97%, the optimal setting by RSM suggests the concentration of caprylic acid at 2.82% and the centrifugal time at 28 minutes.