Subba Ramarao Rachapudi Venkata, N. Reddicharla, S. Alshehhi, Indra Utama, S. A. Al Nuimi, Dávid Gönczi, Oussema Toumi, Eleonora Pechorskaya, Georg Schweiger, Franz Führer
{"title":"人工智能辅助井组合优化——自动化油藏管理咨询系统,实现资产价值最大化——ADNOC陆上案例研究","authors":"Subba Ramarao Rachapudi Venkata, N. Reddicharla, S. Alshehhi, Indra Utama, S. A. Al Nuimi, Dávid Gönczi, Oussema Toumi, Eleonora Pechorskaya, Georg Schweiger, Franz Führer","doi":"10.2118/207274-ms","DOIUrl":null,"url":null,"abstract":"\n Matured hydrocarbon fields are continuously deteriorating and selection of well interventions turn into critical task with an objective of achieving higher business value. Time consuming simulation models and classical decision-making approach making it difficult to rapidly identify the best underperforming, potential rig and rig-less candidates. Therefore, the objective of this paper is to demonstrate the automated solution with data driven machine learning (ML) & AI assisted workflows to prioritize the intervention opportunities that can deliver higher sustainable oil rate and profitability.\n The solution consists of establishing a customized database using inputs from various sources including production & completion data, flat files and simulation models. Automation of Data gathering along with technical and economical calculations were implemented to overcome the repetitive and less added value tasks. Second layer of solution includes configuration of tailor-made workflows to conduct the analysis of well performance, logs, output from simulation models (static reservoir model, well models) along with historical events. Further these workflows were combination of current best practices of an integrated assessment of subsurface opportunities through analytical computations along with machine learning driven techniques for ranking the well intervention opportunities with consideration of complexity in implementation.\n The automated process outcome is a comprehensive list of future well intervention candidates like well conversion to gas lift, water shutoff, stimulation and nitrogen kick-off opportunities. The opportunity ranking is completed with AI assisted supported scoring system that takes input from technical, financial and implementation risk scores. In addition, intuitive dashboards are built and tailored with the involvement of management and engineering departments to track the opportunity maturation process.\n The advisory system has been implemented and tested in a giant mature field with over 300 wells. The solution identified more techno-economical feasible opportunities within hours instead of weeks or months with reduced risk of failure resulting into an improved economic success rate. The first set of opportunities under implementation and expected a gain of 2.5MM$ with in first one year and expected to have reoccurring gains in subsequent years. The ranked opportunities are incorporated into the business plan, RMP plans and drilling & workover schedule in accordance to field development targets. This advisory system helps in maximizing the profitability and minimizing CAPEX and OPEX. This further maximizes utilization of production optimization models by 30%. Currently the system was implemented in one of ADNOC Onshore field and expected to be scaled to other fields based on consistent value creation.\n A hybrid approach of physics and machine learning based solution led to the development of automated workflows to identify and rank the inactive strings, well conversion to gas lift candidates & underperforming candidates resulting into successful cost optimization and production gain.","PeriodicalId":10981,"journal":{"name":"Day 4 Thu, November 18, 2021","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Assisted Well Portfolio Optimization - An Automated Reservoir Management Advisory System to Maximize the Asset Value - Case Study from ADNOC Onshore\",\"authors\":\"Subba Ramarao Rachapudi Venkata, N. Reddicharla, S. Alshehhi, Indra Utama, S. A. Al Nuimi, Dávid Gönczi, Oussema Toumi, Eleonora Pechorskaya, Georg Schweiger, Franz Führer\",\"doi\":\"10.2118/207274-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Matured hydrocarbon fields are continuously deteriorating and selection of well interventions turn into critical task with an objective of achieving higher business value. Time consuming simulation models and classical decision-making approach making it difficult to rapidly identify the best underperforming, potential rig and rig-less candidates. Therefore, the objective of this paper is to demonstrate the automated solution with data driven machine learning (ML) & AI assisted workflows to prioritize the intervention opportunities that can deliver higher sustainable oil rate and profitability.\\n The solution consists of establishing a customized database using inputs from various sources including production & completion data, flat files and simulation models. Automation of Data gathering along with technical and economical calculations were implemented to overcome the repetitive and less added value tasks. Second layer of solution includes configuration of tailor-made workflows to conduct the analysis of well performance, logs, output from simulation models (static reservoir model, well models) along with historical events. Further these workflows were combination of current best practices of an integrated assessment of subsurface opportunities through analytical computations along with machine learning driven techniques for ranking the well intervention opportunities with consideration of complexity in implementation.\\n The automated process outcome is a comprehensive list of future well intervention candidates like well conversion to gas lift, water shutoff, stimulation and nitrogen kick-off opportunities. The opportunity ranking is completed with AI assisted supported scoring system that takes input from technical, financial and implementation risk scores. In addition, intuitive dashboards are built and tailored with the involvement of management and engineering departments to track the opportunity maturation process.\\n The advisory system has been implemented and tested in a giant mature field with over 300 wells. The solution identified more techno-economical feasible opportunities within hours instead of weeks or months with reduced risk of failure resulting into an improved economic success rate. The first set of opportunities under implementation and expected a gain of 2.5MM$ with in first one year and expected to have reoccurring gains in subsequent years. The ranked opportunities are incorporated into the business plan, RMP plans and drilling & workover schedule in accordance to field development targets. This advisory system helps in maximizing the profitability and minimizing CAPEX and OPEX. This further maximizes utilization of production optimization models by 30%. Currently the system was implemented in one of ADNOC Onshore field and expected to be scaled to other fields based on consistent value creation.\\n A hybrid approach of physics and machine learning based solution led to the development of automated workflows to identify and rank the inactive strings, well conversion to gas lift candidates & underperforming candidates resulting into successful cost optimization and production gain.\",\"PeriodicalId\":10981,\"journal\":{\"name\":\"Day 4 Thu, November 18, 2021\",\"volume\":\"63 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 4 Thu, November 18, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207274-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, November 18, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207274-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Artificial Intelligence Assisted Well Portfolio Optimization - An Automated Reservoir Management Advisory System to Maximize the Asset Value - Case Study from ADNOC Onshore
Matured hydrocarbon fields are continuously deteriorating and selection of well interventions turn into critical task with an objective of achieving higher business value. Time consuming simulation models and classical decision-making approach making it difficult to rapidly identify the best underperforming, potential rig and rig-less candidates. Therefore, the objective of this paper is to demonstrate the automated solution with data driven machine learning (ML) & AI assisted workflows to prioritize the intervention opportunities that can deliver higher sustainable oil rate and profitability.
The solution consists of establishing a customized database using inputs from various sources including production & completion data, flat files and simulation models. Automation of Data gathering along with technical and economical calculations were implemented to overcome the repetitive and less added value tasks. Second layer of solution includes configuration of tailor-made workflows to conduct the analysis of well performance, logs, output from simulation models (static reservoir model, well models) along with historical events. Further these workflows were combination of current best practices of an integrated assessment of subsurface opportunities through analytical computations along with machine learning driven techniques for ranking the well intervention opportunities with consideration of complexity in implementation.
The automated process outcome is a comprehensive list of future well intervention candidates like well conversion to gas lift, water shutoff, stimulation and nitrogen kick-off opportunities. The opportunity ranking is completed with AI assisted supported scoring system that takes input from technical, financial and implementation risk scores. In addition, intuitive dashboards are built and tailored with the involvement of management and engineering departments to track the opportunity maturation process.
The advisory system has been implemented and tested in a giant mature field with over 300 wells. The solution identified more techno-economical feasible opportunities within hours instead of weeks or months with reduced risk of failure resulting into an improved economic success rate. The first set of opportunities under implementation and expected a gain of 2.5MM$ with in first one year and expected to have reoccurring gains in subsequent years. The ranked opportunities are incorporated into the business plan, RMP plans and drilling & workover schedule in accordance to field development targets. This advisory system helps in maximizing the profitability and minimizing CAPEX and OPEX. This further maximizes utilization of production optimization models by 30%. Currently the system was implemented in one of ADNOC Onshore field and expected to be scaled to other fields based on consistent value creation.
A hybrid approach of physics and machine learning based solution led to the development of automated workflows to identify and rank the inactive strings, well conversion to gas lift candidates & underperforming candidates resulting into successful cost optimization and production gain.