用ASSET建模EO/IR系统:应用机器学习合成WFOV背景签名生成

B. Steward, Bret M. Wagner, K. Hopkinson, Shannon R. Young
{"title":"用ASSET建模EO/IR系统:应用机器学习合成WFOV背景签名生成","authors":"B. Steward, Bret M. Wagner, K. Hopkinson, Shannon R. Young","doi":"10.1117/12.2638487","DOIUrl":null,"url":null,"abstract":"The AFIT Sensor and Scene Emulation Tool (ASSET) is a physics-based model used to generate synthetic data sets of wide field-of-view (WFOV) electro-optical and infrared (EO/IR) sensors with realistic radiometric properties, noise characteristics, and sensor artifacts. This effort evaluates the use of Convolutional Neural Networks (CNNS) trained on samples of real space-based hyperspectral data paired with panchromatic imagery as a method of generating synthetic hyperspectral reflectance data from wide-band imagery inputs to improve the radiometric accuracy of ASSET. Further, the effort demonstrates how these updates will improve ASSET’s radiometric accuracy through comparisons to NASA’s moderate resolution imaging spectroradiometer (MODIS). In order to place the development of synthetic hyperspectral reflectance data in context, the scene generation process implemented in ASSET is also presented in detail.","PeriodicalId":52940,"journal":{"name":"Security and Defence Quarterly","volume":"9 1","pages":"122710B - 122710B-19"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling EO/IR systems with ASSET: applied machine learning for synthetic WFOV background signature generation\",\"authors\":\"B. Steward, Bret M. Wagner, K. Hopkinson, Shannon R. Young\",\"doi\":\"10.1117/12.2638487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The AFIT Sensor and Scene Emulation Tool (ASSET) is a physics-based model used to generate synthetic data sets of wide field-of-view (WFOV) electro-optical and infrared (EO/IR) sensors with realistic radiometric properties, noise characteristics, and sensor artifacts. This effort evaluates the use of Convolutional Neural Networks (CNNS) trained on samples of real space-based hyperspectral data paired with panchromatic imagery as a method of generating synthetic hyperspectral reflectance data from wide-band imagery inputs to improve the radiometric accuracy of ASSET. Further, the effort demonstrates how these updates will improve ASSET’s radiometric accuracy through comparisons to NASA’s moderate resolution imaging spectroradiometer (MODIS). In order to place the development of synthetic hyperspectral reflectance data in context, the scene generation process implemented in ASSET is also presented in detail.\",\"PeriodicalId\":52940,\"journal\":{\"name\":\"Security and Defence Quarterly\",\"volume\":\"9 1\",\"pages\":\"122710B - 122710B-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Security and Defence Quarterly\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2638487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Security and Defence Quarterly","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2638487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

AFIT传感器和场景仿真工具(ASSET)是一种基于物理的模型,用于生成具有真实辐射特性、噪声特性和传感器伪影的广角视场(WFOV)电光和红外(EO/IR)传感器的合成数据集。本研究评估了卷积神经网络(cnn)在真实天基高光谱数据与全色图像配对样本上的使用,作为一种从宽带图像输入生成合成高光谱反射率数据的方法,以提高ASSET的辐射测量精度。此外,通过与NASA的中分辨率成像光谱辐射计(MODIS)进行比较,这项工作表明了这些更新将如何提高ASSET的辐射测量精度。为了结合合成高光谱反射率数据的开发,本文还详细介绍了在ASSET中实现的场景生成过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling EO/IR systems with ASSET: applied machine learning for synthetic WFOV background signature generation
The AFIT Sensor and Scene Emulation Tool (ASSET) is a physics-based model used to generate synthetic data sets of wide field-of-view (WFOV) electro-optical and infrared (EO/IR) sensors with realistic radiometric properties, noise characteristics, and sensor artifacts. This effort evaluates the use of Convolutional Neural Networks (CNNS) trained on samples of real space-based hyperspectral data paired with panchromatic imagery as a method of generating synthetic hyperspectral reflectance data from wide-band imagery inputs to improve the radiometric accuracy of ASSET. Further, the effort demonstrates how these updates will improve ASSET’s radiometric accuracy through comparisons to NASA’s moderate resolution imaging spectroradiometer (MODIS). In order to place the development of synthetic hyperspectral reflectance data in context, the scene generation process implemented in ASSET is also presented in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
34
审稿时长
9 weeks
期刊最新文献
Role of the private sector within Latvia’s strategic defence documents: Dimensions of psychological resilience and strategic communication Anti-terrorist cooperation as part of Poland’s geopolitical shift. “Operation Bridge” and the rise of a strategic partnership with the United States The role of military morale as an essential dimension of combat power Gender diversity management in NATO for sustainable security and peace SCADvanceXP—an intelligent Polish system for threat detection and monitoring of industrial networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1