类地系外行星的颜色

A. Groot, L. Rossi, V. Trees, J. Cheung, D. Stam
{"title":"类地系外行星的颜色","authors":"A. Groot, L. Rossi, V. Trees, J. Cheung, D. Stam","doi":"10.1051/0004-6361/202037569","DOIUrl":null,"url":null,"abstract":"Understanding the total flux and polarization signals of Earth-like planets and their spectral and temporal variability is essential for the future characterization of such exoplanets. We provide computed total (F) and linearly (Q and U) and circularly (V) polarized fluxes, and the degree of polarization P of sunlight that is reflected by a model Earth, to be used for instrument designs, optimizing observational strategies, and/or developing retrieval algorithms. We modeled a realistic Earth-like planet using one year of daily Earth-observation data: cloud parameters (distribution, optical thickness, top pressure, and particle effective radius), and surface parameters (distribution, surface type, and albedo). The Stokes vector of the disk-averaged reflected sunlight was computed for phase angles alpha from 0 to 180 degrees, and for wavelengths lambda from 350 to 865 nm. The total flux F is one order of magnitude higher than the polarized flux Q, and Q is two and four orders of magnitude higher than U and V, respectively. Without clouds, the peak-to-peak daily variations due to the planetary rotation increase with increasing lambda for F, Q, and P, while they decrease for U and V. Clouds modify but do not completely suppress the variations that are due to rotating surface features. With clouds, the variation in F increases with increasing lambda, while in Q, it decreases with increasing lambda, except at the largest phase angles. In earlier work, it was shown that with oceans, Q changes color from blue through white to red. The alpha where the color changes increases with increasing cloud coverage. Here, we show that this unique color change in Q also occurs when the oceans are partly replaced by continents, with or without clouds. The degree of polarization P shows a similar color change. Our computed fluxes and degree of polarization will be made publicly available.","PeriodicalId":8428,"journal":{"name":"arXiv: Earth and Planetary Astrophysics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Colors of an Earth-like exoplanet\",\"authors\":\"A. Groot, L. Rossi, V. Trees, J. Cheung, D. Stam\",\"doi\":\"10.1051/0004-6361/202037569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the total flux and polarization signals of Earth-like planets and their spectral and temporal variability is essential for the future characterization of such exoplanets. We provide computed total (F) and linearly (Q and U) and circularly (V) polarized fluxes, and the degree of polarization P of sunlight that is reflected by a model Earth, to be used for instrument designs, optimizing observational strategies, and/or developing retrieval algorithms. We modeled a realistic Earth-like planet using one year of daily Earth-observation data: cloud parameters (distribution, optical thickness, top pressure, and particle effective radius), and surface parameters (distribution, surface type, and albedo). The Stokes vector of the disk-averaged reflected sunlight was computed for phase angles alpha from 0 to 180 degrees, and for wavelengths lambda from 350 to 865 nm. The total flux F is one order of magnitude higher than the polarized flux Q, and Q is two and four orders of magnitude higher than U and V, respectively. Without clouds, the peak-to-peak daily variations due to the planetary rotation increase with increasing lambda for F, Q, and P, while they decrease for U and V. Clouds modify but do not completely suppress the variations that are due to rotating surface features. With clouds, the variation in F increases with increasing lambda, while in Q, it decreases with increasing lambda, except at the largest phase angles. In earlier work, it was shown that with oceans, Q changes color from blue through white to red. The alpha where the color changes increases with increasing cloud coverage. Here, we show that this unique color change in Q also occurs when the oceans are partly replaced by continents, with or without clouds. The degree of polarization P shows a similar color change. Our computed fluxes and degree of polarization will be made publicly available.\",\"PeriodicalId\":8428,\"journal\":{\"name\":\"arXiv: Earth and Planetary Astrophysics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Earth and Planetary Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/0004-6361/202037569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Earth and Planetary Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/0004-6361/202037569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

了解类地行星的总通量和极化信号,以及它们的光谱和时间变异性,对于未来对此类系外行星的表征至关重要。我们提供了计算的总(F)、线性(Q和U)和圆(V)极化通量,以及被模型地球反射的太阳光的极化度P,用于仪器设计、优化观测策略和/或开发检索算法。我们利用一年的日常地球观测数据模拟了一个真实的类地行星:云参数(分布、光学厚度、顶压和粒子有效半径)和地表参数(分布、地表类型和反照率)。计算了圆盘平均反射太阳光的Stokes矢量,其相位角α为0到180度,波长λ为350到865 nm。总通量F比极化通量Q高一个数量级,而Q分别比U和V高两个和四个数量级。在没有云的情况下,F、Q和P的峰值日变化随着λ的增加而增加,而U和v的峰值日变化则减少。云会改变但不能完全抑制由旋转地表特征引起的变化。在云中,F的变化随λ的增大而增大,而Q的变化随λ的增大而减小,但在最大相角处除外。在早期的研究中,研究人员发现,在海洋中,Q的颜色从蓝色到白色再到红色。颜色变化的alpha值随着云层覆盖的增加而增加。在这里,我们表明,当海洋部分被大陆取代时,无论有没有云,Q中这种独特的颜色变化也会发生。偏振度P显示出类似的颜色变化。我们计算出的通量和极化度将会公开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Colors of an Earth-like exoplanet
Understanding the total flux and polarization signals of Earth-like planets and their spectral and temporal variability is essential for the future characterization of such exoplanets. We provide computed total (F) and linearly (Q and U) and circularly (V) polarized fluxes, and the degree of polarization P of sunlight that is reflected by a model Earth, to be used for instrument designs, optimizing observational strategies, and/or developing retrieval algorithms. We modeled a realistic Earth-like planet using one year of daily Earth-observation data: cloud parameters (distribution, optical thickness, top pressure, and particle effective radius), and surface parameters (distribution, surface type, and albedo). The Stokes vector of the disk-averaged reflected sunlight was computed for phase angles alpha from 0 to 180 degrees, and for wavelengths lambda from 350 to 865 nm. The total flux F is one order of magnitude higher than the polarized flux Q, and Q is two and four orders of magnitude higher than U and V, respectively. Without clouds, the peak-to-peak daily variations due to the planetary rotation increase with increasing lambda for F, Q, and P, while they decrease for U and V. Clouds modify but do not completely suppress the variations that are due to rotating surface features. With clouds, the variation in F increases with increasing lambda, while in Q, it decreases with increasing lambda, except at the largest phase angles. In earlier work, it was shown that with oceans, Q changes color from blue through white to red. The alpha where the color changes increases with increasing cloud coverage. Here, we show that this unique color change in Q also occurs when the oceans are partly replaced by continents, with or without clouds. The degree of polarization P shows a similar color change. Our computed fluxes and degree of polarization will be made publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Revisiting The Averaged Problem in The Case of Mean-Motion Resonances of The Restricted Three-Body Problem. Global Rigorous Treatment and Application To The Co-Orbital Motion. Automatic planetary defense Deflecting NEOs by missiles shot from L1 and L3 (Earth-Moon). Modeling the nonaxisymmetric structure in the HD 163296 disk with planet-disk interaction Origin and dynamical evolution of the asteroid belt Revised planet brightness temperatures using the Planck/LFI 2018 data release
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1