T. Nguyen, A. Mouraud, M. Thévenin, G. Corre, O. Pasquier, S. Pillement
{"title":"模型驱动的MPSoC设计可靠性评估","authors":"T. Nguyen, A. Mouraud, M. Thévenin, G. Corre, O. Pasquier, S. Pillement","doi":"10.1109/DASIP.2017.8122115","DOIUrl":null,"url":null,"abstract":"When designing a Multi-Processor System-on-Chip (MPSoC), a very large range of design alternatives arises from a huge space of possible design options and component choices. Literature proposes numerous Design-Space-Exploration (DSE) approaches thats mainly focus on cost optimization. In this paper, we present a DSE approach which focuses on the reliability of the whole design. This approach is based on a meta-model of Multi-Processor System-on-Chips (MPSoCs) integrated the reliability evaluation. We develop a tool that allows designers to describe and optimize their platform based on the proposed meta-model. The obtained results of an MPSoC is presented including the improved overall reliability of the system thanks to the automatic selection of the fault tolerance strategies for each component.","PeriodicalId":6637,"journal":{"name":"2017 Conference on Design and Architectures for Signal and Image Processing (DASIP)","volume":"1 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model-driven reliability evaluation for MPSoC design\",\"authors\":\"T. Nguyen, A. Mouraud, M. Thévenin, G. Corre, O. Pasquier, S. Pillement\",\"doi\":\"10.1109/DASIP.2017.8122115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When designing a Multi-Processor System-on-Chip (MPSoC), a very large range of design alternatives arises from a huge space of possible design options and component choices. Literature proposes numerous Design-Space-Exploration (DSE) approaches thats mainly focus on cost optimization. In this paper, we present a DSE approach which focuses on the reliability of the whole design. This approach is based on a meta-model of Multi-Processor System-on-Chips (MPSoCs) integrated the reliability evaluation. We develop a tool that allows designers to describe and optimize their platform based on the proposed meta-model. The obtained results of an MPSoC is presented including the improved overall reliability of the system thanks to the automatic selection of the fault tolerance strategies for each component.\",\"PeriodicalId\":6637,\"journal\":{\"name\":\"2017 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"volume\":\"1 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Conference on Design and Architectures for Signal and Image Processing (DASIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASIP.2017.8122115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Conference on Design and Architectures for Signal and Image Processing (DASIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASIP.2017.8122115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-driven reliability evaluation for MPSoC design
When designing a Multi-Processor System-on-Chip (MPSoC), a very large range of design alternatives arises from a huge space of possible design options and component choices. Literature proposes numerous Design-Space-Exploration (DSE) approaches thats mainly focus on cost optimization. In this paper, we present a DSE approach which focuses on the reliability of the whole design. This approach is based on a meta-model of Multi-Processor System-on-Chips (MPSoCs) integrated the reliability evaluation. We develop a tool that allows designers to describe and optimize their platform based on the proposed meta-model. The obtained results of an MPSoC is presented including the improved overall reliability of the system thanks to the automatic selection of the fault tolerance strategies for each component.