从汽车制动系统诊断的角度,用实例分析汽车制动系统

S. Stefanović, S. Mladenović
{"title":"从汽车制动系统诊断的角度,用实例分析汽车制动系统","authors":"S. Stefanović, S. Mladenović","doi":"10.35120/kij5403505s","DOIUrl":null,"url":null,"abstract":"The part of the braking system that has the task of transmitting the command activated by the driver to thebrakes is called the transmission mechanism. The transmission mechanism itself can be different depending on howit is constructed and conceptually executed. As for the conceptual solution, the question arises as to whether thetransmission method itself must be such that the driver's command is only transmitted to the brakes or the driver'scommand itself is handed over to a separate energy system. The energy system itself can be such that it additionallyhelps the activation of the brakes (servo brake force boosters) or completely takes over the activation of the brakes,with the creation of a certain braking force on the wheels, and these are the so-called mechanisms with full servoaction. Today we have the following transmission mechanisms in use: Mechanical transmission, hydraulic with orwithout servo amplification, hydraulic with full servo action, pneumatic with full servo action, hydro-pneumaticwith servo amplification or with full servo action. The very choice of these systems depends on a large number offactors, but the main one is - how much energy must be delivered to the brakes. Each of these systems is explainedseparately in the paper. A mechanical transmission mechanism is a system that does not have any additional servoamplification, but the command of the driver or the person operating the machine is directly transmitted to thebrakes. Based on this, we can conclude that the application of this transmission mechanism in brake systems is quitelimited. Today, this transmission mechanism is only used as a service brake on some slower trucks and tractors. Thehydraulic transmission mechanism is the system that is most common in brake systems of passenger, light cargo anddelivery vehicles. In the case of vehicles weighing up to 1000 kg, the driver alone is sufficient to develop thenecessary energy for braking, so it is not necessary to additionally support the braking force with servo boosters. Butthat's why smaller trucks and delivery vehicles need additional help from a servo booster to activate the brakingforce. Servo amplifiers have become an integral part of the equipment in passenger vehicles primarily due to thesafety, security and comfort of passengers. In contrast to the mechanical transmission, this system is morecomplicated in terms of performance and its operation is based on the transmission of pressure through the brakefluid from the main brake cylinder to the brake cylinder in the brakes. The pressure created by the brake fluid actson the pistons in the cylinder itself and in this way force is created and the brakes are activated. The main advantageof this system is the very safety and safer braking, because with the hydraulic system it is possible to make adistribution in several independent branches to the cylinders on the brakes, and this is one of the basic satisfactoryrequirements in the ECE regulation that the brakes must also have an auxiliary braking system in case dismissal ofthe principal. The system itself consists of: the pedal, which is activated by pressing the foot on the pedal itself, themain brake cylinder, the distribution system, the working brake cylinders in the brakes and the brake itself.","PeriodicalId":17821,"journal":{"name":"Knowledge International Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANALYSIS OF BRAKE SYSTEMS IN MOTOR VEHICLES USING PRACTICAL EXAMPLES FROM THE ASPECT OF THEIR DIAGNOSTICS\",\"authors\":\"S. Stefanović, S. Mladenović\",\"doi\":\"10.35120/kij5403505s\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The part of the braking system that has the task of transmitting the command activated by the driver to thebrakes is called the transmission mechanism. The transmission mechanism itself can be different depending on howit is constructed and conceptually executed. As for the conceptual solution, the question arises as to whether thetransmission method itself must be such that the driver's command is only transmitted to the brakes or the driver'scommand itself is handed over to a separate energy system. The energy system itself can be such that it additionallyhelps the activation of the brakes (servo brake force boosters) or completely takes over the activation of the brakes,with the creation of a certain braking force on the wheels, and these are the so-called mechanisms with full servoaction. Today we have the following transmission mechanisms in use: Mechanical transmission, hydraulic with orwithout servo amplification, hydraulic with full servo action, pneumatic with full servo action, hydro-pneumaticwith servo amplification or with full servo action. The very choice of these systems depends on a large number offactors, but the main one is - how much energy must be delivered to the brakes. Each of these systems is explainedseparately in the paper. A mechanical transmission mechanism is a system that does not have any additional servoamplification, but the command of the driver or the person operating the machine is directly transmitted to thebrakes. Based on this, we can conclude that the application of this transmission mechanism in brake systems is quitelimited. Today, this transmission mechanism is only used as a service brake on some slower trucks and tractors. Thehydraulic transmission mechanism is the system that is most common in brake systems of passenger, light cargo anddelivery vehicles. In the case of vehicles weighing up to 1000 kg, the driver alone is sufficient to develop thenecessary energy for braking, so it is not necessary to additionally support the braking force with servo boosters. Butthat's why smaller trucks and delivery vehicles need additional help from a servo booster to activate the brakingforce. Servo amplifiers have become an integral part of the equipment in passenger vehicles primarily due to thesafety, security and comfort of passengers. In contrast to the mechanical transmission, this system is morecomplicated in terms of performance and its operation is based on the transmission of pressure through the brakefluid from the main brake cylinder to the brake cylinder in the brakes. The pressure created by the brake fluid actson the pistons in the cylinder itself and in this way force is created and the brakes are activated. The main advantageof this system is the very safety and safer braking, because with the hydraulic system it is possible to make adistribution in several independent branches to the cylinders on the brakes, and this is one of the basic satisfactoryrequirements in the ECE regulation that the brakes must also have an auxiliary braking system in case dismissal ofthe principal. The system itself consists of: the pedal, which is activated by pressing the foot on the pedal itself, themain brake cylinder, the distribution system, the working brake cylinders in the brakes and the brake itself.\",\"PeriodicalId\":17821,\"journal\":{\"name\":\"Knowledge International Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35120/kij5403505s\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35120/kij5403505s","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

制动系统中负责将驾驶员激活的指令传递给制动器的部分称为传动机构。传输机制本身可以根据其构造和概念执行方式而有所不同。至于概念上的解决方案,问题是传输方法本身是否必须是这样的,即驾驶员的命令只传输到刹车,还是驾驶员的命令本身被传递到一个单独的能量系统。能量系统本身可以是这样的,它额外帮助刹车的激活(伺服制动力助推器)或完全接管刹车的激活,在车轮上产生一定的制动力,这些都是所谓的全伺服作用机制。今天我们有以下的传动机构在使用:机械传动,液压带或不带伺服放大,液压带全伺服作用,气动带全伺服作用,液压带伺服放大或全伺服作用。这些系统的选择取决于很多因素,但最主要的是——必须向刹车传递多少能量。本文分别对这些系统进行了说明。机械传动机构是一种没有任何附加伺服放大的系统,但驾驶员或操作机器的人的命令直接传递给制动器。由此可以得出结论,该传动机构在制动系统中的应用是相当有限的。今天,这种传动机构只在一些较慢的卡车和拖拉机上用作服务制动。液压传动机构是乘用车、轻型货车和货车制动系统中最常见的系统。在车辆重达1000公斤的情况下,驾驶员本身就足以产生制动所需的能量,因此没有必要用伺服助推器额外支持制动力。但这就是为什么小型卡车和送货车辆需要伺服助推器的额外帮助来激活制动力。伺服放大器已成为乘用车设备中不可或缺的一部分,主要是由于乘客的安全、保障和舒适。与机械传动相比,该系统在性能上更为复杂,其工作原理是通过制动液将压力从制动器中的主制动缸传递到制动缸。制动液产生的压力作用于气缸内的活塞,这样就产生了力,启动了刹车。该系统的主要优点是非常安全和更安全的制动,因为液压系统可以在几个独立分支中分配到制动器上的气缸,这是欧洲经委会法规中基本令人满意的要求之一,即制动器还必须具有辅助制动系统,以防主要车辆被解雇。该系统本身由以下部分组成:踏板(通过脚踩踏板本身来激活踏板)、主制动气缸、分配系统、制动器中的工作制动气缸和制动器本身。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANALYSIS OF BRAKE SYSTEMS IN MOTOR VEHICLES USING PRACTICAL EXAMPLES FROM THE ASPECT OF THEIR DIAGNOSTICS
The part of the braking system that has the task of transmitting the command activated by the driver to thebrakes is called the transmission mechanism. The transmission mechanism itself can be different depending on howit is constructed and conceptually executed. As for the conceptual solution, the question arises as to whether thetransmission method itself must be such that the driver's command is only transmitted to the brakes or the driver'scommand itself is handed over to a separate energy system. The energy system itself can be such that it additionallyhelps the activation of the brakes (servo brake force boosters) or completely takes over the activation of the brakes,with the creation of a certain braking force on the wheels, and these are the so-called mechanisms with full servoaction. Today we have the following transmission mechanisms in use: Mechanical transmission, hydraulic with orwithout servo amplification, hydraulic with full servo action, pneumatic with full servo action, hydro-pneumaticwith servo amplification or with full servo action. The very choice of these systems depends on a large number offactors, but the main one is - how much energy must be delivered to the brakes. Each of these systems is explainedseparately in the paper. A mechanical transmission mechanism is a system that does not have any additional servoamplification, but the command of the driver or the person operating the machine is directly transmitted to thebrakes. Based on this, we can conclude that the application of this transmission mechanism in brake systems is quitelimited. Today, this transmission mechanism is only used as a service brake on some slower trucks and tractors. Thehydraulic transmission mechanism is the system that is most common in brake systems of passenger, light cargo anddelivery vehicles. In the case of vehicles weighing up to 1000 kg, the driver alone is sufficient to develop thenecessary energy for braking, so it is not necessary to additionally support the braking force with servo boosters. Butthat's why smaller trucks and delivery vehicles need additional help from a servo booster to activate the brakingforce. Servo amplifiers have become an integral part of the equipment in passenger vehicles primarily due to thesafety, security and comfort of passengers. In contrast to the mechanical transmission, this system is morecomplicated in terms of performance and its operation is based on the transmission of pressure through the brakefluid from the main brake cylinder to the brake cylinder in the brakes. The pressure created by the brake fluid actson the pistons in the cylinder itself and in this way force is created and the brakes are activated. The main advantageof this system is the very safety and safer braking, because with the hydraulic system it is possible to make adistribution in several independent branches to the cylinders on the brakes, and this is one of the basic satisfactoryrequirements in the ECE regulation that the brakes must also have an auxiliary braking system in case dismissal ofthe principal. The system itself consists of: the pedal, which is activated by pressing the foot on the pedal itself, themain brake cylinder, the distribution system, the working brake cylinders in the brakes and the brake itself.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CLINICAL ASPECTS OF DIFFERENT PHARMACEUTICAL FORMULATIONS OF PROPRANOLOL IN THE TREATMENT OF INFANTILE HEMANGIOMA USAGE OF RED MUD IN GEOPOLYMER MORTAR MIXTURES PSEUDOMONAS FLUORESCENS IN SHEEP MILK GREEK YOGHURT FROM VLASINA – A BIOCHEMICAL CHARACTERIZATION ON RHYTHM IN POETRY PLATELET- NEUTROPHIL COMPLEXES – DEFINITION, MECHANISMS AND IMPLICATIONS (REVIEW)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1