评估真实软件演进中的测试套件缩减

A. Shi, A. Gyori, Suleman Mahmood, Peiyuan Zhao, D. Marinov
{"title":"评估真实软件演进中的测试套件缩减","authors":"A. Shi, A. Gyori, Suleman Mahmood, Peiyuan Zhao, D. Marinov","doi":"10.1145/3213846.3213875","DOIUrl":null,"url":null,"abstract":"Test-suite reduction (TSR) speeds up regression testing by removing redundant tests from the test suite, thus running fewer tests in the future builds. To decide whether to use TSR or not, a developer needs some way to predict how well the reduced test suite will detect real faults in the future compared to the original test suite. Prior research evaluated the cost of TSR using only program versions with seeded faults, but such evaluations do not explicitly predict the effectiveness of the reduced test suite in future builds. We perform the first extensive study of TSR using real test failures in (failed) builds that occurred for real code changes. We analyze 1478 failed builds from 32 GitHub projects that run their tests on Travis. Each failed build can have multiple faults, so we propose a family of mappings from test failures to faults. We use these mappings to compute Failed-Build Detection Loss (FBDL), the percentage of failed builds where the reduced test suite misses to detect all the faults detected by the original test suite. We find that FBDL can be up to 52.2%, which is higher than suggested by traditional TSR metrics. Moreover, traditional TSR metrics are not good predictors of FBDL, making it difficult for developers to decide whether to use reduced test suites.","PeriodicalId":20542,"journal":{"name":"Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Evaluating test-suite reduction in real software evolution\",\"authors\":\"A. Shi, A. Gyori, Suleman Mahmood, Peiyuan Zhao, D. Marinov\",\"doi\":\"10.1145/3213846.3213875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Test-suite reduction (TSR) speeds up regression testing by removing redundant tests from the test suite, thus running fewer tests in the future builds. To decide whether to use TSR or not, a developer needs some way to predict how well the reduced test suite will detect real faults in the future compared to the original test suite. Prior research evaluated the cost of TSR using only program versions with seeded faults, but such evaluations do not explicitly predict the effectiveness of the reduced test suite in future builds. We perform the first extensive study of TSR using real test failures in (failed) builds that occurred for real code changes. We analyze 1478 failed builds from 32 GitHub projects that run their tests on Travis. Each failed build can have multiple faults, so we propose a family of mappings from test failures to faults. We use these mappings to compute Failed-Build Detection Loss (FBDL), the percentage of failed builds where the reduced test suite misses to detect all the faults detected by the original test suite. We find that FBDL can be up to 52.2%, which is higher than suggested by traditional TSR metrics. Moreover, traditional TSR metrics are not good predictors of FBDL, making it difficult for developers to decide whether to use reduced test suites.\",\"PeriodicalId\":20542,\"journal\":{\"name\":\"Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3213846.3213875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3213846.3213875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

测试套件缩减(TSR)通过从测试套件中删除冗余测试来加速回归测试,从而在未来的构建中运行更少的测试。为了决定是否使用TSR,开发人员需要一些方法来预测与原始测试套件相比,缩减后的测试套件在未来检测真正错误的能力。先前的研究仅使用带有种子错误的程序版本来评估TSR的成本,但是这样的评估并不能明确地预测在未来构建中减少的测试套件的有效性。我们对TSR进行了第一次广泛的研究,使用了实际代码更改中发生的(失败的)构建中的实际测试失败。我们分析了在Travis上运行测试的32个GitHub项目中的1478个失败构建。每个失败的构建都可能有多个错误,因此我们提出了一系列从测试失败到错误的映射。我们使用这些映射来计算失败构建检测损失(FBDL),即减少的测试套件未能检测到原始测试套件检测到的所有错误的失败构建的百分比。我们发现FBDL可以达到52.2%,高于传统TSR指标的建议。此外,传统的TSR指标并不能很好地预测FBDL,这使得开发人员很难决定是否使用减少的测试套件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluating test-suite reduction in real software evolution
Test-suite reduction (TSR) speeds up regression testing by removing redundant tests from the test suite, thus running fewer tests in the future builds. To decide whether to use TSR or not, a developer needs some way to predict how well the reduced test suite will detect real faults in the future compared to the original test suite. Prior research evaluated the cost of TSR using only program versions with seeded faults, but such evaluations do not explicitly predict the effectiveness of the reduced test suite in future builds. We perform the first extensive study of TSR using real test failures in (failed) builds that occurred for real code changes. We analyze 1478 failed builds from 32 GitHub projects that run their tests on Travis. Each failed build can have multiple faults, so we propose a family of mappings from test failures to faults. We use these mappings to compute Failed-Build Detection Loss (FBDL), the percentage of failed builds where the reduced test suite misses to detect all the faults detected by the original test suite. We find that FBDL can be up to 52.2%, which is higher than suggested by traditional TSR metrics. Moreover, traditional TSR metrics are not good predictors of FBDL, making it difficult for developers to decide whether to use reduced test suites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
LAND: a user-friendly and customizable test generation tool for Android apps Bench4BL: reproducibility study on the performance of IR-based bug localization Search-based detection of deviation failures in the migration of legacy spreadsheet applications Identifying implementation bugs in machine learning based image classifiers using metamorphic testing Tests from traces: automated unit test extraction for R
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1