T. Vo, Jwar Meetro, S. Floyd, B. Lynch, S. Tafazoli, Akio Ichihara, G. Chikamatsu
{"title":"葡曲霉嘌呤核苷酶的安全性评价","authors":"T. Vo, Jwar Meetro, S. Floyd, B. Lynch, S. Tafazoli, Akio Ichihara, G. Chikamatsu","doi":"10.1177/23978473211061428","DOIUrl":null,"url":null,"abstract":"Purine nucleosidase (EC 3.2.2.1) catalyzes the N-riboside hydrolysis of purine nucleosides to D-ribose and a purine base. This enzyme may be used in the production of beer and other alcoholic beverages to reduce the purine content of these products. Purine nucleosidase was obtained from Aspergillus luchuensis naturally occurring in grain sources. The safety profile of purine nucleosidase is not well documented in the scientific literature, and a series of toxicological studies were undertaken to investigate the safety of its use in food production. Purine nucleosidase from A. luchuensis was non-mutagenic and non-clastogenic in a standard Ames test and in vitro mammalian chromosome aberration assay. Administration of purine nucleosidase in a 90-day subchronic toxicity study in Sprague-Dawley rats did not elicit adverse findings on any hematology, clinical chemistry, urinalysis, organ weight, or histopathological parameter at doses up to 1700 mg total organic solids (TOS)/kg body weight/day, the highest dose tested. The results suggest purine nucleosidase to lack systemic toxic effect. The no-observed-adverse-effect level was concluded to be 1700 mg TOS/kg body weight/day. The results of the toxicology studies support the safety of purine nucleosidase from a non-genetically modified strain of A. luchuensis when used in food production.","PeriodicalId":23155,"journal":{"name":"Toxicology Research and Application","volume":"21 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Safety assessment of purine nucleosidase from Aspergillus luchuensis\",\"authors\":\"T. Vo, Jwar Meetro, S. Floyd, B. Lynch, S. Tafazoli, Akio Ichihara, G. Chikamatsu\",\"doi\":\"10.1177/23978473211061428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Purine nucleosidase (EC 3.2.2.1) catalyzes the N-riboside hydrolysis of purine nucleosides to D-ribose and a purine base. This enzyme may be used in the production of beer and other alcoholic beverages to reduce the purine content of these products. Purine nucleosidase was obtained from Aspergillus luchuensis naturally occurring in grain sources. The safety profile of purine nucleosidase is not well documented in the scientific literature, and a series of toxicological studies were undertaken to investigate the safety of its use in food production. Purine nucleosidase from A. luchuensis was non-mutagenic and non-clastogenic in a standard Ames test and in vitro mammalian chromosome aberration assay. Administration of purine nucleosidase in a 90-day subchronic toxicity study in Sprague-Dawley rats did not elicit adverse findings on any hematology, clinical chemistry, urinalysis, organ weight, or histopathological parameter at doses up to 1700 mg total organic solids (TOS)/kg body weight/day, the highest dose tested. The results suggest purine nucleosidase to lack systemic toxic effect. The no-observed-adverse-effect level was concluded to be 1700 mg TOS/kg body weight/day. The results of the toxicology studies support the safety of purine nucleosidase from a non-genetically modified strain of A. luchuensis when used in food production.\",\"PeriodicalId\":23155,\"journal\":{\"name\":\"Toxicology Research and Application\",\"volume\":\"21 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicology Research and Application\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/23978473211061428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology Research and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/23978473211061428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Safety assessment of purine nucleosidase from Aspergillus luchuensis
Purine nucleosidase (EC 3.2.2.1) catalyzes the N-riboside hydrolysis of purine nucleosides to D-ribose and a purine base. This enzyme may be used in the production of beer and other alcoholic beverages to reduce the purine content of these products. Purine nucleosidase was obtained from Aspergillus luchuensis naturally occurring in grain sources. The safety profile of purine nucleosidase is not well documented in the scientific literature, and a series of toxicological studies were undertaken to investigate the safety of its use in food production. Purine nucleosidase from A. luchuensis was non-mutagenic and non-clastogenic in a standard Ames test and in vitro mammalian chromosome aberration assay. Administration of purine nucleosidase in a 90-day subchronic toxicity study in Sprague-Dawley rats did not elicit adverse findings on any hematology, clinical chemistry, urinalysis, organ weight, or histopathological parameter at doses up to 1700 mg total organic solids (TOS)/kg body weight/day, the highest dose tested. The results suggest purine nucleosidase to lack systemic toxic effect. The no-observed-adverse-effect level was concluded to be 1700 mg TOS/kg body weight/day. The results of the toxicology studies support the safety of purine nucleosidase from a non-genetically modified strain of A. luchuensis when used in food production.