多机器人任务分配的优化与市场方法比较研究

Mohamed Badreldin, A. Hussein, A. Khamis
{"title":"多机器人任务分配的优化与市场方法比较研究","authors":"Mohamed Badreldin, A. Hussein, A. Khamis","doi":"10.1155/2013/256524","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study between optimization-based and market-based approaches used for solving the Multirobot task allocation (MRTA) problem that arises in the context of multirobot systems (MRS). The two proposed approaches are used to find the optimal allocation of a number of heterogeneous robots to a number of heterogeneous tasks. The two approaches were extensively tested over a number of test scenarios in order to test their capability of handling complex heavily constrained MRS applications that include extended number of tasks and robots. Finally, a comparative study is implemented between the two approaches and the results show that the optimization-based approach outperforms themarket-based approach in terms of optimal allocation and computational time.","PeriodicalId":7253,"journal":{"name":"Adv. Artif. Intell.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"A Comparative Study between Optimization and Market-Based Approaches to Multi-Robot Task Allocation\",\"authors\":\"Mohamed Badreldin, A. Hussein, A. Khamis\",\"doi\":\"10.1155/2013/256524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comparative study between optimization-based and market-based approaches used for solving the Multirobot task allocation (MRTA) problem that arises in the context of multirobot systems (MRS). The two proposed approaches are used to find the optimal allocation of a number of heterogeneous robots to a number of heterogeneous tasks. The two approaches were extensively tested over a number of test scenarios in order to test their capability of handling complex heavily constrained MRS applications that include extended number of tasks and robots. Finally, a comparative study is implemented between the two approaches and the results show that the optimization-based approach outperforms themarket-based approach in terms of optimal allocation and computational time.\",\"PeriodicalId\":7253,\"journal\":{\"name\":\"Adv. Artif. Intell.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Adv. Artif. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/256524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adv. Artif. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/256524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

摘要

本文对基于优化和基于市场的多机器人任务分配(MRTA)问题的解决方法进行了比较研究,该问题出现在多机器人系统(MRS)的背景下。这两种方法被用于寻找多个异构机器人对多个异构任务的最佳分配。这两种方法在许多测试场景中进行了广泛的测试,以测试它们处理复杂的严格约束的MRS应用程序的能力,这些应用程序包括大量的任务和机器人。最后,对两种方法进行了比较研究,结果表明,基于优化的方法在最优分配和计算时间方面优于基于市场的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comparative Study between Optimization and Market-Based Approaches to Multi-Robot Task Allocation
This paper presents a comparative study between optimization-based and market-based approaches used for solving the Multirobot task allocation (MRTA) problem that arises in the context of multirobot systems (MRS). The two proposed approaches are used to find the optimal allocation of a number of heterogeneous robots to a number of heterogeneous tasks. The two approaches were extensively tested over a number of test scenarios in order to test their capability of handling complex heavily constrained MRS applications that include extended number of tasks and robots. Finally, a comparative study is implemented between the two approaches and the results show that the optimization-based approach outperforms themarket-based approach in terms of optimal allocation and computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
iWordNet: A New Approach to Cognitive Science and Artificial Intelligence Natural Language Processing and Fuzzy Tools for Business Processes in a Geolocation Context Method for Solving LASSO Problem Based on Multidimensional Weight Selection and Configuration of Sorption Isotherm Models in Soils Using Artificial Bees Guided by the Particle Swarm Weighted Constraint Satisfaction for Smart Home Automation and Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1