N. Biderman, S. Novak, T. Laursen, R. Matyi, R. Sundaramoorthy, Gary Dufresne, J. Wax, M. Gardner, D. Fobare, D. Metacarpa, P. Haldar, J. Lloyd
{"title":"镉在CuInGaSe2薄膜中的扩散活化能","authors":"N. Biderman, S. Novak, T. Laursen, R. Matyi, R. Sundaramoorthy, Gary Dufresne, J. Wax, M. Gardner, D. Fobare, D. Metacarpa, P. Haldar, J. Lloyd","doi":"10.1109/PVSC.2013.6744499","DOIUrl":null,"url":null,"abstract":"Diffusivity and activation energy of cadmium in copper indium gallium diselenide (CuInGaSe2 or CIGS) thin films were investigated by annealing solar-grade SLG/Mo/CIGS/CdS samples of two different CIGS thicknesses at temperatures between 150° C and 325° C. Diffusion profiles of cadmium volume and grain boundary were investigated by dual-beam time-of-flight secondary ion mass spectroscopy. A relationship between the cadmium's volume and grain boundary diffusion coefficients and their activation energies at a given annealing temperature was established using LeClaire's grain boundary diffusion model. The data also provide evidence that cadmium diffusion may be strongly modulated by a gallium gradient seen both laterally at the interface and in the bulk in solar-grade CIGS material.","PeriodicalId":6350,"journal":{"name":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","volume":"58 1","pages":"1836-1841"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Diffusion activation energy of cadmium in thin film CuInGaSe2\",\"authors\":\"N. Biderman, S. Novak, T. Laursen, R. Matyi, R. Sundaramoorthy, Gary Dufresne, J. Wax, M. Gardner, D. Fobare, D. Metacarpa, P. Haldar, J. Lloyd\",\"doi\":\"10.1109/PVSC.2013.6744499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusivity and activation energy of cadmium in copper indium gallium diselenide (CuInGaSe2 or CIGS) thin films were investigated by annealing solar-grade SLG/Mo/CIGS/CdS samples of two different CIGS thicknesses at temperatures between 150° C and 325° C. Diffusion profiles of cadmium volume and grain boundary were investigated by dual-beam time-of-flight secondary ion mass spectroscopy. A relationship between the cadmium's volume and grain boundary diffusion coefficients and their activation energies at a given annealing temperature was established using LeClaire's grain boundary diffusion model. The data also provide evidence that cadmium diffusion may be strongly modulated by a gallium gradient seen both laterally at the interface and in the bulk in solar-grade CIGS material.\",\"PeriodicalId\":6350,\"journal\":{\"name\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"volume\":\"58 1\",\"pages\":\"1836-1841\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2013.6744499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 39th Photovoltaic Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2013.6744499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diffusion activation energy of cadmium in thin film CuInGaSe2
Diffusivity and activation energy of cadmium in copper indium gallium diselenide (CuInGaSe2 or CIGS) thin films were investigated by annealing solar-grade SLG/Mo/CIGS/CdS samples of two different CIGS thicknesses at temperatures between 150° C and 325° C. Diffusion profiles of cadmium volume and grain boundary were investigated by dual-beam time-of-flight secondary ion mass spectroscopy. A relationship between the cadmium's volume and grain boundary diffusion coefficients and their activation energies at a given annealing temperature was established using LeClaire's grain boundary diffusion model. The data also provide evidence that cadmium diffusion may be strongly modulated by a gallium gradient seen both laterally at the interface and in the bulk in solar-grade CIGS material.