A. Lay-Ekuakille, G. Vendramin, A. Trotta, I. Sgura, T. Zielinski, P. Turcza
{"title":"生物医学图像遥感预测心肌梗死的准确性评价","authors":"A. Lay-Ekuakille, G. Vendramin, A. Trotta, I. Sgura, T. Zielinski, P. Turcza","doi":"10.1109/ICSENST.2008.4757147","DOIUrl":null,"url":null,"abstract":"Myocardial infarction (MI) can be defined from a number of different perspectives related to clinical, electrocardiographic (ECG), biochemical and pathologic characteristics. The term MI also has social and psychological implications, both as an indicator of a major health problem and as a measure of disease prevalence in population statistics and outcomes of clinical trials. In the distant past, a general consensus existed for the clinical entity designated as MI. In studies of disease prevalence by the World Health Organization (WHO), MI was defined by a combination of two of three characteristics: typical symptoms (i.e., chest discomfort), enzyme rise and a typical ECG pattern involving the development of Q waves. Biomedical sensors dedicated to acquire signals from cardiac instrumentation, even if sophisticated, cannot precisely reveal and help doctors to understand, at a glance, pathologies leading towards MI. This paper traces out an integrated algorithm based on a combination of level set evolution and variational approach according to Mumford-Shah model.","PeriodicalId":6299,"journal":{"name":"2008 3rd International Conference on Sensing Technology","volume":"21 1","pages":"457-461"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Accuracy assessment of sensed biomedical images for myocardial infarction prediction\",\"authors\":\"A. Lay-Ekuakille, G. Vendramin, A. Trotta, I. Sgura, T. Zielinski, P. Turcza\",\"doi\":\"10.1109/ICSENST.2008.4757147\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Myocardial infarction (MI) can be defined from a number of different perspectives related to clinical, electrocardiographic (ECG), biochemical and pathologic characteristics. The term MI also has social and psychological implications, both as an indicator of a major health problem and as a measure of disease prevalence in population statistics and outcomes of clinical trials. In the distant past, a general consensus existed for the clinical entity designated as MI. In studies of disease prevalence by the World Health Organization (WHO), MI was defined by a combination of two of three characteristics: typical symptoms (i.e., chest discomfort), enzyme rise and a typical ECG pattern involving the development of Q waves. Biomedical sensors dedicated to acquire signals from cardiac instrumentation, even if sophisticated, cannot precisely reveal and help doctors to understand, at a glance, pathologies leading towards MI. This paper traces out an integrated algorithm based on a combination of level set evolution and variational approach according to Mumford-Shah model.\",\"PeriodicalId\":6299,\"journal\":{\"name\":\"2008 3rd International Conference on Sensing Technology\",\"volume\":\"21 1\",\"pages\":\"457-461\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd International Conference on Sensing Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENST.2008.4757147\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Sensing Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2008.4757147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Accuracy assessment of sensed biomedical images for myocardial infarction prediction
Myocardial infarction (MI) can be defined from a number of different perspectives related to clinical, electrocardiographic (ECG), biochemical and pathologic characteristics. The term MI also has social and psychological implications, both as an indicator of a major health problem and as a measure of disease prevalence in population statistics and outcomes of clinical trials. In the distant past, a general consensus existed for the clinical entity designated as MI. In studies of disease prevalence by the World Health Organization (WHO), MI was defined by a combination of two of three characteristics: typical symptoms (i.e., chest discomfort), enzyme rise and a typical ECG pattern involving the development of Q waves. Biomedical sensors dedicated to acquire signals from cardiac instrumentation, even if sophisticated, cannot precisely reveal and help doctors to understand, at a glance, pathologies leading towards MI. This paper traces out an integrated algorithm based on a combination of level set evolution and variational approach according to Mumford-Shah model.