单细胞分辨率生物制造策略综述

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING International Journal of Extreme Manufacturing Pub Date : 2023-07-18 DOI:10.1088/2631-7990/ace863
Dezhi Zhou, B. Dou, F. Kroh, Chuqian Wang, Liliang Ouyang
{"title":"单细胞分辨率生物制造策略综述","authors":"Dezhi Zhou, B. Dou, F. Kroh, Chuqian Wang, Liliang Ouyang","doi":"10.1088/2631-7990/ace863","DOIUrl":null,"url":null,"abstract":"The introduction of living cells to manufacturing process has enabled the engineering of complex biological tissues in vitro. The recent advances in biofabrication with extremely high resolution (e.g. at single cell level) have greatly enhanced this capacity and opened new avenues for tissue engineering. In this review, we comprehensively overview the current biofabrication strategies with single-cell resolution and categorize them based on the dimension of the single-cell building blocks, i.e. zero-dimensional single-cell droplets, one-dimensional single-cell filaments and two-dimensional single-cell sheets. We provide an informative introduction to the most recent advances in these approaches (e.g. cell trapping, bioprinting, electrospinning, microfluidics and cell sheets) and further illustrated how they can be used in in vitro tissue modelling and regenerative medicine. We highlight the significance of single-cell-level biofabrication and discuss the challenges and opportunities in the field.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"18 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biofabrication strategies with single-cell resolution: a review\",\"authors\":\"Dezhi Zhou, B. Dou, F. Kroh, Chuqian Wang, Liliang Ouyang\",\"doi\":\"10.1088/2631-7990/ace863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The introduction of living cells to manufacturing process has enabled the engineering of complex biological tissues in vitro. The recent advances in biofabrication with extremely high resolution (e.g. at single cell level) have greatly enhanced this capacity and opened new avenues for tissue engineering. In this review, we comprehensively overview the current biofabrication strategies with single-cell resolution and categorize them based on the dimension of the single-cell building blocks, i.e. zero-dimensional single-cell droplets, one-dimensional single-cell filaments and two-dimensional single-cell sheets. We provide an informative introduction to the most recent advances in these approaches (e.g. cell trapping, bioprinting, electrospinning, microfluidics and cell sheets) and further illustrated how they can be used in in vitro tissue modelling and regenerative medicine. We highlight the significance of single-cell-level biofabrication and discuss the challenges and opportunities in the field.\",\"PeriodicalId\":52353,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ace863\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2631-7990/ace863","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

将活细胞引入制造过程使复杂生物组织的工程在体外成为可能。最近在高分辨率(如单细胞水平)生物制造方面的进展极大地增强了这种能力,并为组织工程开辟了新的途径。在这篇综述中,我们全面概述了目前单细胞分辨率的生物制造策略,并根据单细胞构建块的尺寸对它们进行了分类,即零维单细胞液滴,一维单细胞细丝和二维单细胞片。我们对这些方法的最新进展(如细胞捕获、生物打印、静电纺丝、微流体和细胞片)进行了翔实的介绍,并进一步说明了它们如何用于体外组织建模和再生医学。我们强调单细胞水平生物制造的重要性,并讨论该领域的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biofabrication strategies with single-cell resolution: a review
The introduction of living cells to manufacturing process has enabled the engineering of complex biological tissues in vitro. The recent advances in biofabrication with extremely high resolution (e.g. at single cell level) have greatly enhanced this capacity and opened new avenues for tissue engineering. In this review, we comprehensively overview the current biofabrication strategies with single-cell resolution and categorize them based on the dimension of the single-cell building blocks, i.e. zero-dimensional single-cell droplets, one-dimensional single-cell filaments and two-dimensional single-cell sheets. We provide an informative introduction to the most recent advances in these approaches (e.g. cell trapping, bioprinting, electrospinning, microfluidics and cell sheets) and further illustrated how they can be used in in vitro tissue modelling and regenerative medicine. We highlight the significance of single-cell-level biofabrication and discuss the challenges and opportunities in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
期刊最新文献
Advancements in 3D skin bioprinting: processes, bioinks, applications and sensor integration. Additively manufactured Ti-Ta-Cu alloys for the next-generation load-bearing implants. A novel approach of jet polishing for interior surface of small grooved components using three developed setups Elliptical vibration chiseling: a novel process for texturing ultra-high-aspect-ratio microstructures on the metallic surface Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1