高级氧化反应中的无金属碳催化

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2018-03-01 DOI:10.1021/acs.accounts.7b00535
Xiaoguang Duan, Hongqi Sun*, Shaobin Wang*
{"title":"高级氧化反应中的无金属碳催化","authors":"Xiaoguang Duan,&nbsp;Hongqi Sun*,&nbsp;Shaobin Wang*","doi":"10.1021/acs.accounts.7b00535","DOIUrl":null,"url":null,"abstract":"<p >Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free nanocarbons have demonstrated promise as catalysts for green remediation technologies to overcome the poor stability and undesirable metal leaching in metal-based advanced oxidation processes (AOPs). Since our reports of heterogeneous activation of persulfates with low-dimensional nanocarbons, the novel oxidative system has raised tremendous interest for degradation of organic contaminants in wastewater without secondary contamination. In this Account, we showcase our recent contributions to metal-free catalysis in advanced oxidation, including design of nanocarbon catalysts, exploration of intrinsic active sites, and identification of reactive species and reaction pathways, and we offer perspectives on carbocatalysis for future environmental applications.</p><p >The journey starts with the discovery of peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation by graphene-based materials. With the systematic investigations on most carbon allotropes, for the first time the carbocatalysis for PMS or PDS activation was correlated with the pristine carbon configuration, oxygen functionality (ketonic groups), defect degree (exposed edge sites and vacancies), and dimensional structure. Moreover, an intrinsic difference in catalytic oxidation does exist between PMS and PDS activation. For example, the PMS/carbon reaction is dominated by free radicals, while PDS/carbon catalysis was unveiled as a singlet oxygen- or nonradical-based process in which the surface-activated PDS complex directly degrades the organic pollutants without relying on the generation of free radicals. Nitrogen doping significantly enhances the carbocatalysis because of the positively charged carbon domains, which strongly bind with persulfates to form reactive intermediates toward organic reactions. More importantly, N doping substantially alters the catalytic oxidation from a radical process to a nonradical pathway in PMS activation. Codoping of sulfur or boron with nitrogen at a rational level will synergistically promote the catalysis as a result of the formation of more catalytic centers by improved charge/spin redistribution of the carbon framework. Furthermore, a structure–performance relationship was established for annealed nanodiamonds with a characteristic sp<sup>3</sup>/sp<sup>2</sup> (core/shell) hybridization, where the catalytic pathways were intimately dependent on the thickness of the graphitic shells. Interestingly, the introduction of structural defects and N dopants into the well-defined graphitic carbon framework and alteration of graphene/diamond hybrids can transform the persulfate/carbon system from a radical oxidation pathway to a nonradical pathway. Encapsulation of metal nanoparticles within carbon layers further modulates the electronic states of the interacting carbon via charge transport to increase the electron density. Overall, this Account contributes to unveiling the mist of carbocatalysis in AOPs and to summarizing the achievements of metal-free remediation. We also present future research directions on underpinning the knowledge base to facilitate the applications of nanocarbons in sustainable catalysis and environmental chemistry.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1021/acs.accounts.7b00535","citationCount":"787","resultStr":"{\"title\":\"Metal-Free Carbocatalysis in Advanced Oxidation Reactions\",\"authors\":\"Xiaoguang Duan,&nbsp;Hongqi Sun*,&nbsp;Shaobin Wang*\",\"doi\":\"10.1021/acs.accounts.7b00535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free nanocarbons have demonstrated promise as catalysts for green remediation technologies to overcome the poor stability and undesirable metal leaching in metal-based advanced oxidation processes (AOPs). Since our reports of heterogeneous activation of persulfates with low-dimensional nanocarbons, the novel oxidative system has raised tremendous interest for degradation of organic contaminants in wastewater without secondary contamination. In this Account, we showcase our recent contributions to metal-free catalysis in advanced oxidation, including design of nanocarbon catalysts, exploration of intrinsic active sites, and identification of reactive species and reaction pathways, and we offer perspectives on carbocatalysis for future environmental applications.</p><p >The journey starts with the discovery of peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation by graphene-based materials. With the systematic investigations on most carbon allotropes, for the first time the carbocatalysis for PMS or PDS activation was correlated with the pristine carbon configuration, oxygen functionality (ketonic groups), defect degree (exposed edge sites and vacancies), and dimensional structure. Moreover, an intrinsic difference in catalytic oxidation does exist between PMS and PDS activation. For example, the PMS/carbon reaction is dominated by free radicals, while PDS/carbon catalysis was unveiled as a singlet oxygen- or nonradical-based process in which the surface-activated PDS complex directly degrades the organic pollutants without relying on the generation of free radicals. Nitrogen doping significantly enhances the carbocatalysis because of the positively charged carbon domains, which strongly bind with persulfates to form reactive intermediates toward organic reactions. More importantly, N doping substantially alters the catalytic oxidation from a radical process to a nonradical pathway in PMS activation. Codoping of sulfur or boron with nitrogen at a rational level will synergistically promote the catalysis as a result of the formation of more catalytic centers by improved charge/spin redistribution of the carbon framework. Furthermore, a structure–performance relationship was established for annealed nanodiamonds with a characteristic sp<sup>3</sup>/sp<sup>2</sup> (core/shell) hybridization, where the catalytic pathways were intimately dependent on the thickness of the graphitic shells. Interestingly, the introduction of structural defects and N dopants into the well-defined graphitic carbon framework and alteration of graphene/diamond hybrids can transform the persulfate/carbon system from a radical oxidation pathway to a nonradical pathway. Encapsulation of metal nanoparticles within carbon layers further modulates the electronic states of the interacting carbon via charge transport to increase the electron density. Overall, this Account contributes to unveiling the mist of carbocatalysis in AOPs and to summarizing the achievements of metal-free remediation. We also present future research directions on underpinning the knowledge base to facilitate the applications of nanocarbons in sustainable catalysis and environmental chemistry.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1021/acs.accounts.7b00535\",\"citationCount\":\"787\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.accounts.7b00535\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.accounts.7b00535","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 787

摘要

催化过程极大地促进了化工生产、能源转化和环境修复的快速工业化。作为碳催化的新兴应用之一,无金属纳米碳在绿色修复技术中表现出了良好的前景,以克服金属基高级氧化工艺(AOPs)稳定性差和金属浸出不良的问题。自从我们报道过硫酸盐与低维纳米碳的非均相活化以来,这种新型氧化系统引起了人们对无二次污染的废水中有机污染物降解的极大兴趣。在这篇文章中,我们展示了我们最近在高级氧化中无金属催化的贡献,包括纳米碳催化剂的设计,内在活性位点的探索,反应物质和反应途径的确定,并为未来的环境应用提供了碳催化的观点。旅程始于石墨烯基材料对过氧单硫酸盐(PMS)和过氧二硫酸盐(PDS)活化的发现。随着对大多数碳同素异形体的系统研究,首次将PMS或PDS活化的碳催化作用与原始碳构型、氧官能团(酮基)、缺陷程度(暴露边缘位和空位)和尺寸结构联系起来。此外,PMS和PDS活化在催化氧化方面确实存在内在差异。例如,PMS/碳反应以自由基为主,而PDS/碳催化是一种基于氧或非自由基的单线态过程,在这种过程中,表面活化的PDS配合物直接降解有机污染物,而不依赖于自由基的产生。氮掺杂显著增强了碳催化作用,因为带正电的碳结构域与过硫酸盐紧密结合,形成有机反应的活性中间体。更重要的是,N掺杂大大改变了PMS活化过程中的催化氧化从自由基过程转变为非自由基途径。硫或硼与氮在合理水平上共掺杂,通过改善碳骨架的电荷/自旋重分布,形成更多的催化中心,从而协同促进催化作用。此外,对于具有sp3/sp2(核/壳)杂化特征的退火纳米金刚石,建立了结构-性能关系,其中催化途径密切依赖于石墨壳的厚度。有趣的是,在石墨碳框架中引入结构缺陷和N掺杂剂以及石墨烯/金刚石杂化物的改变可以将过硫酸盐/碳体系从自由基氧化途径转变为非自由基氧化途径。将金属纳米颗粒封装在碳层内,通过电荷输运进一步调节相互作用碳的电子态,从而增加电子密度。总的来说,本报告有助于揭示AOPs中碳催化的迷雾,并总结了无金属修复的成果。我们还提出了未来的研究方向,以巩固知识库,促进纳米碳在可持续催化和环境化学中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Metal-Free Carbocatalysis in Advanced Oxidation Reactions

Catalytic processes have remarkably boosted the rapid industrializations in chemical production, energy conversion, and environmental remediation. As one of the emerging applications of carbocatalysis, metal-free nanocarbons have demonstrated promise as catalysts for green remediation technologies to overcome the poor stability and undesirable metal leaching in metal-based advanced oxidation processes (AOPs). Since our reports of heterogeneous activation of persulfates with low-dimensional nanocarbons, the novel oxidative system has raised tremendous interest for degradation of organic contaminants in wastewater without secondary contamination. In this Account, we showcase our recent contributions to metal-free catalysis in advanced oxidation, including design of nanocarbon catalysts, exploration of intrinsic active sites, and identification of reactive species and reaction pathways, and we offer perspectives on carbocatalysis for future environmental applications.

The journey starts with the discovery of peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation by graphene-based materials. With the systematic investigations on most carbon allotropes, for the first time the carbocatalysis for PMS or PDS activation was correlated with the pristine carbon configuration, oxygen functionality (ketonic groups), defect degree (exposed edge sites and vacancies), and dimensional structure. Moreover, an intrinsic difference in catalytic oxidation does exist between PMS and PDS activation. For example, the PMS/carbon reaction is dominated by free radicals, while PDS/carbon catalysis was unveiled as a singlet oxygen- or nonradical-based process in which the surface-activated PDS complex directly degrades the organic pollutants without relying on the generation of free radicals. Nitrogen doping significantly enhances the carbocatalysis because of the positively charged carbon domains, which strongly bind with persulfates to form reactive intermediates toward organic reactions. More importantly, N doping substantially alters the catalytic oxidation from a radical process to a nonradical pathway in PMS activation. Codoping of sulfur or boron with nitrogen at a rational level will synergistically promote the catalysis as a result of the formation of more catalytic centers by improved charge/spin redistribution of the carbon framework. Furthermore, a structure–performance relationship was established for annealed nanodiamonds with a characteristic sp3/sp2 (core/shell) hybridization, where the catalytic pathways were intimately dependent on the thickness of the graphitic shells. Interestingly, the introduction of structural defects and N dopants into the well-defined graphitic carbon framework and alteration of graphene/diamond hybrids can transform the persulfate/carbon system from a radical oxidation pathway to a nonradical pathway. Encapsulation of metal nanoparticles within carbon layers further modulates the electronic states of the interacting carbon via charge transport to increase the electron density. Overall, this Account contributes to unveiling the mist of carbocatalysis in AOPs and to summarizing the achievements of metal-free remediation. We also present future research directions on underpinning the knowledge base to facilitate the applications of nanocarbons in sustainable catalysis and environmental chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Issue Publication Information Issue Editorial Masthead Broadband Rotational Spectroscopy in Uniform Supersonic Flows: Chirped Pulse/Uniform Flow for Reaction Dynamics and Low Temperature Kinetics Conversion of Carbon Dioxide into Molecular-based Porous Frameworks Mechanisms of Controllable Growth and Ohmic Contact of Two-Dimensional Molybdenum Disulfide: Insight from Atomistic Simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1