弹性约束层合平面框架的自由振动分析

IF 1.9 4区 工程技术 Q2 ACOUSTICS Journal of Vibration and Acoustics-Transactions of the Asme Pub Date : 2022-10-05 DOI:10.1115/1.4055875
Richard Bachoo
{"title":"弹性约束层合平面框架的自由振动分析","authors":"Richard Bachoo","doi":"10.1115/1.4055875","DOIUrl":null,"url":null,"abstract":"\n A wave-based model that incorporates the effects of shear deformation, rotary inertia and elastic coupling due to structural anisotropy, is developed to analyze the free vibrations of elastically restrained laminated planar frames. In this work, a generalized frame structure is represented as an assemblage of laminated beam segments that act as one-dimensional waveguides. The segments are assumed to undergo only in-plane motion, which upon applying Hamilton's principle, is described by a sixth order coupled differential equation. Dispersion analysis is conducted and the nature of the wavefields associated with the propagation matrix is discussed. Generally restrained boundaries and internal joints are considered, and the associated reflection and transmission matrices are derived. Using the principle of wave-train closure, a closed-form characteristic equation is obtained by systematically assembling the propagation, reflection and transmission matrices. The wave-based model is inherently deterministic, and solving the characteristic equation offers the advantage of determining the exact natural frequencies using conventional root finding algorithms. Application of the proposed model is demonstrated by analyzing an elastically restrained inclined laminated portal frame. Extensive computational analysis is conducted to illustrate the influence of stacking sequence, frame angle, relative frame length, orthotropicity ratios and spring stiffness on the exact natural frequencies (and in certain cases the mode shapes) of the frame. Independent finite element simulations conducted in ANSYS® APDL are consistently used to verify the validity of the analytical results.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Free Vibration Analysis of Elastically Restrained Laminated Planar Frames\",\"authors\":\"Richard Bachoo\",\"doi\":\"10.1115/1.4055875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A wave-based model that incorporates the effects of shear deformation, rotary inertia and elastic coupling due to structural anisotropy, is developed to analyze the free vibrations of elastically restrained laminated planar frames. In this work, a generalized frame structure is represented as an assemblage of laminated beam segments that act as one-dimensional waveguides. The segments are assumed to undergo only in-plane motion, which upon applying Hamilton's principle, is described by a sixth order coupled differential equation. Dispersion analysis is conducted and the nature of the wavefields associated with the propagation matrix is discussed. Generally restrained boundaries and internal joints are considered, and the associated reflection and transmission matrices are derived. Using the principle of wave-train closure, a closed-form characteristic equation is obtained by systematically assembling the propagation, reflection and transmission matrices. The wave-based model is inherently deterministic, and solving the characteristic equation offers the advantage of determining the exact natural frequencies using conventional root finding algorithms. Application of the proposed model is demonstrated by analyzing an elastically restrained inclined laminated portal frame. Extensive computational analysis is conducted to illustrate the influence of stacking sequence, frame angle, relative frame length, orthotropicity ratios and spring stiffness on the exact natural frequencies (and in certain cases the mode shapes) of the frame. Independent finite element simulations conducted in ANSYS® APDL are consistently used to verify the validity of the analytical results.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2022-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055875\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055875","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 1

摘要

建立了考虑剪切变形、转动惯量和结构各向异性引起的弹性耦合效应的波动模型,用于分析弹性约束层合平面框架的自由振动。在这项工作中,一个广义的框架结构被表示为作为一维波导的层压光束段的组合。假设线段只进行平面内运动,应用汉密尔顿原理,用六阶耦合微分方程来描述。进行了色散分析,讨论了与传播矩阵相关的波场性质。考虑了一般约束边界和内部节点,推导了相应的反射矩阵和透射矩阵。利用波列闭合原理,将传播、反射和透射矩阵系统地组合在一起,得到了一个闭型特征方程。基于波动的模型本质上是确定性的,求解特征方程提供了使用传统寻根算法确定精确固有频率的优势。通过对一个受弹性约束的斜叠层门式刚架的分析,验证了该模型的适用性。进行了广泛的计算分析,以说明堆叠顺序,框架角度,相对框架长度,正交异性比和弹簧刚度对框架的确切固有频率(以及在某些情况下的模态振型)的影响。在ANSYS®APDL中进行的独立有限元模拟始终用于验证分析结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Free Vibration Analysis of Elastically Restrained Laminated Planar Frames
A wave-based model that incorporates the effects of shear deformation, rotary inertia and elastic coupling due to structural anisotropy, is developed to analyze the free vibrations of elastically restrained laminated planar frames. In this work, a generalized frame structure is represented as an assemblage of laminated beam segments that act as one-dimensional waveguides. The segments are assumed to undergo only in-plane motion, which upon applying Hamilton's principle, is described by a sixth order coupled differential equation. Dispersion analysis is conducted and the nature of the wavefields associated with the propagation matrix is discussed. Generally restrained boundaries and internal joints are considered, and the associated reflection and transmission matrices are derived. Using the principle of wave-train closure, a closed-form characteristic equation is obtained by systematically assembling the propagation, reflection and transmission matrices. The wave-based model is inherently deterministic, and solving the characteristic equation offers the advantage of determining the exact natural frequencies using conventional root finding algorithms. Application of the proposed model is demonstrated by analyzing an elastically restrained inclined laminated portal frame. Extensive computational analysis is conducted to illustrate the influence of stacking sequence, frame angle, relative frame length, orthotropicity ratios and spring stiffness on the exact natural frequencies (and in certain cases the mode shapes) of the frame. Independent finite element simulations conducted in ANSYS® APDL are consistently used to verify the validity of the analytical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
11.80%
发文量
79
审稿时长
7 months
期刊介绍: The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences. Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.
期刊最新文献
Bone conduction: A linear viscoelastic mixed lumped-continuum model for the human skin in the acoustic frequency range A Multiple-Burner Approach to Passive Control of Multiple Longitudinal Acoustic Instabilities in Combustors Widening the Band Gaps of Hourglass Lattice Truss Core Sandwich Structures for Broadband Vibration Suppression Material Extrusion on an Ultrasonic Air Bed for 3D Printing Nonlinear Energy Transfer of a Spar-Floater System using the Inerter Pendulum Vibration Absorber
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1