三种内锥形种植基台设计的三维有限元分析

G. Thomé, R. Salatti, L. Trojan, S. Bernardes, M. B. Moura
{"title":"三种内锥形种植基台设计的三维有限元分析","authors":"G. Thomé, R. Salatti, L. Trojan, S. Bernardes, M. B. Moura","doi":"10.1590/1981-86372023003120220064","DOIUrl":null,"url":null,"abstract":"ABSTRACT Objective: The aim of this study was to compare the stress distribution in internal tapered connection implants with different adaptation geometries submitted to oblique load simulation using the Finite Element Analysis (FEA) method. Methods: Three different internal tapered implant-abutment assemblies were modeled by varying only the diameter of the abutment body in the cone region. The dimensions of the implants were 4.0 mm in diameter and 13 mm in length. Oblique loads of 210 N angled 30 degrees to the long axis of the implant were applied to a hemispherical body positioned over the abutments simulating a dental crown. The stress generated by the implant-abutment assembly was analyzed by the FEA method using the von Mises criterion. Results: A higher concentration of stress in the coronal region (collar) and implant body on the opposite side of the load application was shown, as well as in the body region of the abutments and in the screw threads. The cervical region of the implants showed the highest von Mises stress values, the highest values being observed in G3 (1034 MPa), followed by G2 (841 MPa) and G1 (702 MPa). Conclusion: According to the results presented, it can be concluded that the stress distribution was more homogeneous and less concentrated in the G1 implant-abutment assembly. Therefore, the use of abutments with dimensions standardized by the implant manufacturer is recommended.","PeriodicalId":30069,"journal":{"name":"RGO Revista Gaucha de Odontologia","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional finite element analysis of three internal tapered implant-abutment designs\",\"authors\":\"G. Thomé, R. Salatti, L. Trojan, S. Bernardes, M. B. Moura\",\"doi\":\"10.1590/1981-86372023003120220064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Objective: The aim of this study was to compare the stress distribution in internal tapered connection implants with different adaptation geometries submitted to oblique load simulation using the Finite Element Analysis (FEA) method. Methods: Three different internal tapered implant-abutment assemblies were modeled by varying only the diameter of the abutment body in the cone region. The dimensions of the implants were 4.0 mm in diameter and 13 mm in length. Oblique loads of 210 N angled 30 degrees to the long axis of the implant were applied to a hemispherical body positioned over the abutments simulating a dental crown. The stress generated by the implant-abutment assembly was analyzed by the FEA method using the von Mises criterion. Results: A higher concentration of stress in the coronal region (collar) and implant body on the opposite side of the load application was shown, as well as in the body region of the abutments and in the screw threads. The cervical region of the implants showed the highest von Mises stress values, the highest values being observed in G3 (1034 MPa), followed by G2 (841 MPa) and G1 (702 MPa). Conclusion: According to the results presented, it can be concluded that the stress distribution was more homogeneous and less concentrated in the G1 implant-abutment assembly. Therefore, the use of abutments with dimensions standardized by the implant manufacturer is recommended.\",\"PeriodicalId\":30069,\"journal\":{\"name\":\"RGO Revista Gaucha de Odontologia\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RGO Revista Gaucha de Odontologia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/1981-86372023003120220064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RGO Revista Gaucha de Odontologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1981-86372023003120220064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要目的:采用有限元分析(FEA)方法,比较不同自适应几何形状的内锥形连接种植体在倾斜载荷模拟下的应力分布。方法:通过只改变牙体锥体的直径来模拟三种不同的内锥形种植体-基牙组合。种植体的尺寸为直径4.0 mm,长度13 mm。在模拟牙冠的基台上放置一个半球形体,施加210牛的斜载荷,与种植体的长轴成30度角。采用von Mises准则对种植体-基台组合产生的应力进行了有限元分析。结果:在负荷施加的另一侧冠状区(项圈)和种植体以及基台体区和螺纹处显示出较高的应力集中。种植体颈部von Mises应力值最高,G3 (1034 MPa)最大,G2 (841 MPa)次之,G1 (702 MPa)次之。结论:根据上述结果,G1种植体-基牙组合体的应力分布较为均匀,集中程度较低。因此,推荐使用由种植体制造商标准化尺寸的基台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-dimensional finite element analysis of three internal tapered implant-abutment designs
ABSTRACT Objective: The aim of this study was to compare the stress distribution in internal tapered connection implants with different adaptation geometries submitted to oblique load simulation using the Finite Element Analysis (FEA) method. Methods: Three different internal tapered implant-abutment assemblies were modeled by varying only the diameter of the abutment body in the cone region. The dimensions of the implants were 4.0 mm in diameter and 13 mm in length. Oblique loads of 210 N angled 30 degrees to the long axis of the implant were applied to a hemispherical body positioned over the abutments simulating a dental crown. The stress generated by the implant-abutment assembly was analyzed by the FEA method using the von Mises criterion. Results: A higher concentration of stress in the coronal region (collar) and implant body on the opposite side of the load application was shown, as well as in the body region of the abutments and in the screw threads. The cervical region of the implants showed the highest von Mises stress values, the highest values being observed in G3 (1034 MPa), followed by G2 (841 MPa) and G1 (702 MPa). Conclusion: According to the results presented, it can be concluded that the stress distribution was more homogeneous and less concentrated in the G1 implant-abutment assembly. Therefore, the use of abutments with dimensions standardized by the implant manufacturer is recommended.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
35
审稿时长
20 weeks
期刊最新文献
Sleep disorders are associated with both morning temporal and jaw pain among adults and elderly: a population-based study in Brazil Radiolucent image in lower third molar: hidden caries or pre-eruptive resorption?: a case report Edentulism and number of medications are associated with nutritional status in older adults: a population-based cross-sectional study Fluoride in Mozambique: retrospective study Evidence-practice gap in treatment recommendations for proximal caries among Brazilian dentists
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1