注入无机物到聚合物重分布层电介质的亚表面以提高与金属互连的附着力

Shreya Dwarakanath, P. Raj, Collen Z. Leng, V. Smet, M. Losego, V. Sundaram, R. Tummala
{"title":"注入无机物到聚合物重分布层电介质的亚表面以提高与金属互连的附着力","authors":"Shreya Dwarakanath, P. Raj, Collen Z. Leng, V. Smet, M. Losego, V. Sundaram, R. Tummala","doi":"10.1109/ECTC.2017.277","DOIUrl":null,"url":null,"abstract":"This paper demonstrates a new class of inorganic-organic hybrid dielectric materials to address the requirements for high-temperature reliability of next-generation high-density, high-power packages and electronics in harsh environments for automotive applications. A major concern for reliability is the inadequate adhesion of metals with high-temperature polymers. Adhesion deteriorates further via thermal and oxidative exposure and moisture absorption. In this paper, a novel vapor phase infiltration (VPI) technique is applied to create an organic-inorganic hybrid dielectric surface that improves metal-polymer adhesion. The VPI process infuses inorganic constituents to a depth of at least 3 microns, as revealed by elemental analysis using SEM-EDX and XPS depth profiles. In preliminary testing, Cu/Cr films deposited onto these modified polymer surfaces exhibit 3x higher peel strength than metal films deposited on untreated polymer.","PeriodicalId":6557,"journal":{"name":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","volume":"34 1","pages":"150-155"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Infusing Inorganics into the Subsurface of Polymer Redistribution Layer Dielectrics for Improved Adhesion to Metals Interconnects\",\"authors\":\"Shreya Dwarakanath, P. Raj, Collen Z. Leng, V. Smet, M. Losego, V. Sundaram, R. Tummala\",\"doi\":\"10.1109/ECTC.2017.277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates a new class of inorganic-organic hybrid dielectric materials to address the requirements for high-temperature reliability of next-generation high-density, high-power packages and electronics in harsh environments for automotive applications. A major concern for reliability is the inadequate adhesion of metals with high-temperature polymers. Adhesion deteriorates further via thermal and oxidative exposure and moisture absorption. In this paper, a novel vapor phase infiltration (VPI) technique is applied to create an organic-inorganic hybrid dielectric surface that improves metal-polymer adhesion. The VPI process infuses inorganic constituents to a depth of at least 3 microns, as revealed by elemental analysis using SEM-EDX and XPS depth profiles. In preliminary testing, Cu/Cr films deposited onto these modified polymer surfaces exhibit 3x higher peel strength than metal films deposited on untreated polymer.\",\"PeriodicalId\":6557,\"journal\":{\"name\":\"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)\",\"volume\":\"34 1\",\"pages\":\"150-155\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTC.2017.277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 67th Electronic Components and Technology Conference (ECTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTC.2017.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文展示了一类新的无机-有机杂化介电材料,以满足汽车应用在恶劣环境下对下一代高密度、高功率封装和电子产品的高温可靠性要求。可靠性的一个主要问题是金属与高温聚合物的附着力不足。通过热、氧化暴露和吸湿,附着力进一步恶化。本文采用一种新的气相渗透(VPI)技术来制备有机-无机杂化介电表面,以提高金属-聚合物的附着力。根据SEM-EDX和XPS深度剖面的元素分析,VPI工艺将无机成分注入至少3微米的深度。在初步测试中,沉积在这些改性聚合物表面的Cu/Cr膜的剥离强度比沉积在未处理聚合物上的金属膜高3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infusing Inorganics into the Subsurface of Polymer Redistribution Layer Dielectrics for Improved Adhesion to Metals Interconnects
This paper demonstrates a new class of inorganic-organic hybrid dielectric materials to address the requirements for high-temperature reliability of next-generation high-density, high-power packages and electronics in harsh environments for automotive applications. A major concern for reliability is the inadequate adhesion of metals with high-temperature polymers. Adhesion deteriorates further via thermal and oxidative exposure and moisture absorption. In this paper, a novel vapor phase infiltration (VPI) technique is applied to create an organic-inorganic hybrid dielectric surface that improves metal-polymer adhesion. The VPI process infuses inorganic constituents to a depth of at least 3 microns, as revealed by elemental analysis using SEM-EDX and XPS depth profiles. In preliminary testing, Cu/Cr films deposited onto these modified polymer surfaces exhibit 3x higher peel strength than metal films deposited on untreated polymer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Peridynamic Solution of Wetness Equation with Time Dependent Saturated Concentration in ANSYS Framework Axially Tapered Circular Core Polymer Optical Waveguides Enabling Highly Efficient Light Coupling Low Loss Channel-Shuffling Polymer Waveguides: Design and Fabrication Development of Packaging Technology for High Temperature Resistant SiC Module of Automobile Application 3D Packaging of Embedded Opto-Electronic Die and CMOS IC Based on Wet Etched Silicon Interposer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1