基于PSO-BP的煤炭企业物流成本预测

Yong-kui Shi, Jian-sheng Shao
{"title":"基于PSO-BP的煤炭企业物流成本预测","authors":"Yong-kui Shi, Jian-sheng Shao","doi":"10.5503/J.CL.2010.01.007","DOIUrl":null,"url":null,"abstract":"In order to forecast the logistics cost of coal enterprises effectively,the PSO-BP and BP network are respectively used to forecast the logistics cost ,the result shows that the PSO-BP network's convergence speed and prediction accuracy are obvious better than BP network. The PSO-BP neural network is very attractive for a wide application in forecasting logistics cost in coal enterprises.","PeriodicalId":35059,"journal":{"name":"辽宁工程技术大学学报(自然科学版)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The forecast of logistics cost of coal enterprises based on PSO-BP\",\"authors\":\"Yong-kui Shi, Jian-sheng Shao\",\"doi\":\"10.5503/J.CL.2010.01.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to forecast the logistics cost of coal enterprises effectively,the PSO-BP and BP network are respectively used to forecast the logistics cost ,the result shows that the PSO-BP network's convergence speed and prediction accuracy are obvious better than BP network. The PSO-BP neural network is very attractive for a wide application in forecasting logistics cost in coal enterprises.\",\"PeriodicalId\":35059,\"journal\":{\"name\":\"辽宁工程技术大学学报(自然科学版)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"辽宁工程技术大学学报(自然科学版)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.5503/J.CL.2010.01.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"辽宁工程技术大学学报(自然科学版)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.5503/J.CL.2010.01.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 1

摘要

为了有效地预测煤炭企业的物流成本,分别采用PSO-BP和BP网络对煤炭企业的物流成本进行预测,结果表明,PSO-BP网络的收敛速度和预测精度明显优于BP网络。PSO-BP神经网络在煤炭企业物流成本预测中具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The forecast of logistics cost of coal enterprises based on PSO-BP
In order to forecast the logistics cost of coal enterprises effectively,the PSO-BP and BP network are respectively used to forecast the logistics cost ,the result shows that the PSO-BP network's convergence speed and prediction accuracy are obvious better than BP network. The PSO-BP neural network is very attractive for a wide application in forecasting logistics cost in coal enterprises.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
辽宁工程技术大学学报(自然科学版)
辽宁工程技术大学学报(自然科学版) Multidisciplinary-Multidisciplinary
CiteScore
0.50
自引率
0.00%
发文量
8919
期刊介绍:
期刊最新文献
Technology of controlling upper corner gas by pneumatic fan with vortex zone replacement Application of Electromagnetic Radiation (EMR) Technology in Monitoring and Warning of Coal and Rock Dynamic Disasters Soft Sensor Modeling Based on Fuzzy System Optimization The forecast of logistics cost of coal enterprises based on PSO-BP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1