{"title":"统一功率流控制器对最大限度降低电网过载严重程度的启示","authors":"","doi":"10.1016/j.jksues.2021.10.010","DOIUrl":null,"url":null,"abstract":"<div><p>With the objective of discovering the vital line in an electrical power grid (EPG) where the unified power flow controller (UPFC) could be inserted to minimize the severity of overloading (SOL) during contingencies, an investigation into the stiffness of single line contingencies (SLC) on the EPG is presented in this study. An overloading index (OVI) is developed and used in this contribution to arrange the transmission branches of the EPG based on their cruciality and criticality throughout SLC. A harmony search algorithm (HSA), an optimization method, has been adopted to optimally set the parameters of the UPFC to achieve the best minimum SOL of the system at the optimal location. The IEEE 30-bus network was used as the test bed. Results based on the test bed show that placing a UPFC based on the ranking of a well-known contingency severity index (CSI) minimized the SOL to <span><math><mrow><mn>2.40</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>10</mn></msup></mrow></math></span> as against the <span><math><mrow><mn>8.05</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>5</mn></msup></mrow></math></span> obtained when the placement is done on the ranking based on the proposed OVI. The minimization of SOL is achieved with a reactance and reactive power of <span><math><mrow><mn>0.036</mn><mi>p</mi><mi>u</mi></mrow></math></span> and <span><math><mrow><mn>0.096</mn><mi>p</mi><mi>u</mi><mo>,</mo></mrow></math></span> respectively, of the UPFC. The result also reveals that the proposed OVI identifies with a higher level of precision the vital line in the test bed for placing the UPFC for the purpose of minimizing the SOL during contingencies.</p></div>","PeriodicalId":35558,"journal":{"name":"Journal of King Saud University, Engineering Sciences","volume":"36 6","pages":"Pages 400-408"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1018363921001495/pdfft?md5=ad16a973e1cd6a638fc3bffbd7138b43&pid=1-s2.0-S1018363921001495-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Upshot of unified power flow controller on the minimization of the severity of overloading on electric power grid\",\"authors\":\"\",\"doi\":\"10.1016/j.jksues.2021.10.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>With the objective of discovering the vital line in an electrical power grid (EPG) where the unified power flow controller (UPFC) could be inserted to minimize the severity of overloading (SOL) during contingencies, an investigation into the stiffness of single line contingencies (SLC) on the EPG is presented in this study. An overloading index (OVI) is developed and used in this contribution to arrange the transmission branches of the EPG based on their cruciality and criticality throughout SLC. A harmony search algorithm (HSA), an optimization method, has been adopted to optimally set the parameters of the UPFC to achieve the best minimum SOL of the system at the optimal location. The IEEE 30-bus network was used as the test bed. Results based on the test bed show that placing a UPFC based on the ranking of a well-known contingency severity index (CSI) minimized the SOL to <span><math><mrow><mn>2.40</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>10</mn></msup></mrow></math></span> as against the <span><math><mrow><mn>8.05</mn><mo>×</mo><msup><mrow><mn>10</mn></mrow><mn>5</mn></msup></mrow></math></span> obtained when the placement is done on the ranking based on the proposed OVI. The minimization of SOL is achieved with a reactance and reactive power of <span><math><mrow><mn>0.036</mn><mi>p</mi><mi>u</mi></mrow></math></span> and <span><math><mrow><mn>0.096</mn><mi>p</mi><mi>u</mi><mo>,</mo></mrow></math></span> respectively, of the UPFC. The result also reveals that the proposed OVI identifies with a higher level of precision the vital line in the test bed for placing the UPFC for the purpose of minimizing the SOL during contingencies.</p></div>\",\"PeriodicalId\":35558,\"journal\":{\"name\":\"Journal of King Saud University, Engineering Sciences\",\"volume\":\"36 6\",\"pages\":\"Pages 400-408\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1018363921001495/pdfft?md5=ad16a973e1cd6a638fc3bffbd7138b43&pid=1-s2.0-S1018363921001495-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University, Engineering Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1018363921001495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University, Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1018363921001495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在发现电网(EPG)中可安装统一功率流控制器(UPFC)的重要线路,以最大限度地降低突发事件期间的过载(SOL)严重程度。本研究开发并使用了一种过载指数(OVI),根据其在整个 SLC 期间的关键性和临界性来安排 EPG 的输电分支。采用和谐搜索算法(HSA)这种优化方法来优化 UPFC 的参数设置,以在最佳位置实现系统的最佳最小 SOL。测试平台采用了 IEEE 30 总线网络。测试平台的结果表明,根据著名的突发事件严重程度指数(CSI)的排名来设置 UPFC,可将 SOL 降至 2.40×1010,而根据建议的 OVI 排名来设置时,SOL 为 8.05×105。在 UPFC 的电抗和无功功率分别为 0.036pu 和 0.096pu 的情况下,实现了 SOL 的最小化。结果还表明,拟议的 OVI 能更精确地确定试验台中的重要线路,以便在意外情况下放置 UPFC,从而最大限度地减少 SOL。
Upshot of unified power flow controller on the minimization of the severity of overloading on electric power grid
With the objective of discovering the vital line in an electrical power grid (EPG) where the unified power flow controller (UPFC) could be inserted to minimize the severity of overloading (SOL) during contingencies, an investigation into the stiffness of single line contingencies (SLC) on the EPG is presented in this study. An overloading index (OVI) is developed and used in this contribution to arrange the transmission branches of the EPG based on their cruciality and criticality throughout SLC. A harmony search algorithm (HSA), an optimization method, has been adopted to optimally set the parameters of the UPFC to achieve the best minimum SOL of the system at the optimal location. The IEEE 30-bus network was used as the test bed. Results based on the test bed show that placing a UPFC based on the ranking of a well-known contingency severity index (CSI) minimized the SOL to as against the obtained when the placement is done on the ranking based on the proposed OVI. The minimization of SOL is achieved with a reactance and reactive power of and respectively, of the UPFC. The result also reveals that the proposed OVI identifies with a higher level of precision the vital line in the test bed for placing the UPFC for the purpose of minimizing the SOL during contingencies.
期刊介绍:
Journal of King Saud University - Engineering Sciences (JKSUES) is a peer-reviewed journal published quarterly. It is hosted and published by Elsevier B.V. on behalf of King Saud University. JKSUES is devoted to a wide range of sub-fields in the Engineering Sciences and JKSUES welcome articles of interdisciplinary nature.