−31dBc集成相位噪声29GHz分数n频率合成器,支持向后兼容5G的多个频段,使用倍频器和注入锁定倍频器

Heein Yoon, Juyeop Kim, Suneui Park, Younghyun Lim, Yongsun Lee, Jooeun Bang, Kyoohyun Lim, Jaehyouk Choi
{"title":"−31dBc集成相位噪声29GHz分数n频率合成器,支持向后兼容5G的多个频段,使用倍频器和注入锁定倍频器","authors":"Heein Yoon, Juyeop Kim, Suneui Park, Younghyun Lim, Yongsun Lee, Jooeun Bang, Kyoohyun Lim, Jaehyouk Choi","doi":"10.1109/ISSCC.2018.8310336","DOIUrl":null,"url":null,"abstract":"To address the increasing demand for high-bandwidth mobile communications, 5G technology is targeted to support data-rates up to 10Gb/s. To reach this goal, one of challenging tasks for wireless transceivers is to generate millimeter-wave (mmW) band Lo signals that have an ultra-low integrated phase noise (IPN). The IPN of an LO signal should be reduced to less than −30dBc to satisfy the EVM requirements of high-order modulations, such as 64-QAM. Figure 23.1.1 shows the frequency spectrum for cellular systems, including existing bands below 6GHz and new mmW bands for 5G. A key goal of the evolution of mobile communications is to ensure interoperability with past-generation standards, and this is expected to continue for 5G. Thus, LO generators eventually will be designed to cover existing bands as well as mmW bands. There are many PLLs that can generate mmW signals directly [1,2], but their ability to achieve low IPN is limited. This is because they are susceptible to increases in in-band phase noise due to their large division numbers and out-of-band phase noise due to the low Q-factors of mmW VCOs. They also require a significant amount of power to operate high-frequency circuits, such as frequency dividers. In addition, they must divide frequencies again to support bands below 6GHz, resulting in the consumption of additional power.","PeriodicalId":6617,"journal":{"name":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","volume":"50 1","pages":"366-368"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"A −31dBc integrated-phase-noise 29GHz fractional-N frequency synthesizer supporting multiple frequency bands for backward-compatible 5G using a frequency doubler and injection-locked frequency multipliers\",\"authors\":\"Heein Yoon, Juyeop Kim, Suneui Park, Younghyun Lim, Yongsun Lee, Jooeun Bang, Kyoohyun Lim, Jaehyouk Choi\",\"doi\":\"10.1109/ISSCC.2018.8310336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the increasing demand for high-bandwidth mobile communications, 5G technology is targeted to support data-rates up to 10Gb/s. To reach this goal, one of challenging tasks for wireless transceivers is to generate millimeter-wave (mmW) band Lo signals that have an ultra-low integrated phase noise (IPN). The IPN of an LO signal should be reduced to less than −30dBc to satisfy the EVM requirements of high-order modulations, such as 64-QAM. Figure 23.1.1 shows the frequency spectrum for cellular systems, including existing bands below 6GHz and new mmW bands for 5G. A key goal of the evolution of mobile communications is to ensure interoperability with past-generation standards, and this is expected to continue for 5G. Thus, LO generators eventually will be designed to cover existing bands as well as mmW bands. There are many PLLs that can generate mmW signals directly [1,2], but their ability to achieve low IPN is limited. This is because they are susceptible to increases in in-band phase noise due to their large division numbers and out-of-band phase noise due to the low Q-factors of mmW VCOs. They also require a significant amount of power to operate high-frequency circuits, such as frequency dividers. In addition, they must divide frequencies again to support bands below 6GHz, resulting in the consumption of additional power.\",\"PeriodicalId\":6617,\"journal\":{\"name\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"volume\":\"50 1\",\"pages\":\"366-368\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Solid - State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2018.8310336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Solid - State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2018.8310336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

为了满足对高带宽移动通信日益增长的需求,5G技术的目标是支持高达10Gb/s的数据速率。为了实现这一目标,无线收发器的一项具有挑战性的任务是产生具有超低集成相位噪声(IPN)的毫米波(mmW)频段Lo信号。为了满足高阶调制(如64-QAM)的EVM要求,LO信号的IPN应降低到- 30dBc以下。图23.1.1显示了蜂窝系统的频谱,包括6GHz以下的现有频段和5G的新毫米波频段。移动通信演进的一个关键目标是确保与上一代标准的互操作性,预计5G将继续实现这一目标。因此,LO发生器最终将设计成既能覆盖现有波段,也能覆盖毫米波波段。有许多锁相环可以直接产生毫米波信号[1,2],但它们实现低IPN的能力有限。这是因为它们容易受到带内相位噪声增加的影响,这是由于它们的大分割数,而由于毫米波压控振荡器的低q因子,它们容易受到带外相位噪声增加的影响。它们还需要大量的功率来操作高频电路,如分频器。此外,它们必须再次划分频率以支持6GHz以下的频段,从而消耗额外的功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A −31dBc integrated-phase-noise 29GHz fractional-N frequency synthesizer supporting multiple frequency bands for backward-compatible 5G using a frequency doubler and injection-locked frequency multipliers
To address the increasing demand for high-bandwidth mobile communications, 5G technology is targeted to support data-rates up to 10Gb/s. To reach this goal, one of challenging tasks for wireless transceivers is to generate millimeter-wave (mmW) band Lo signals that have an ultra-low integrated phase noise (IPN). The IPN of an LO signal should be reduced to less than −30dBc to satisfy the EVM requirements of high-order modulations, such as 64-QAM. Figure 23.1.1 shows the frequency spectrum for cellular systems, including existing bands below 6GHz and new mmW bands for 5G. A key goal of the evolution of mobile communications is to ensure interoperability with past-generation standards, and this is expected to continue for 5G. Thus, LO generators eventually will be designed to cover existing bands as well as mmW bands. There are many PLLs that can generate mmW signals directly [1,2], but their ability to achieve low IPN is limited. This is because they are susceptible to increases in in-band phase noise due to their large division numbers and out-of-band phase noise due to the low Q-factors of mmW VCOs. They also require a significant amount of power to operate high-frequency circuits, such as frequency dividers. In addition, they must divide frequencies again to support bands below 6GHz, resulting in the consumption of additional power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EE1: Student research preview (SRP) A 512Gb 3b/Cell 3D flash memory on a 96-word-line-layer technology Single-chip reduced-wire active catheter system with programmable transmit beamforming and receive time-division multiplexing for intracardiac echocardiography A 2.5nJ duty-cycled bridge-to-digital converter integrated in a 13mm3 pressure-sensing system A 36.3-to-38.2GHz −216dBc/Hz2 40nm CMOS fractional-N FMCW chirp synthesizer PLL with a continuous-time bandpass delta-sigma time-to-digital converter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1